K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

A B N C D M
a) Gọi tia phân giác góc C là CM và N là trung điểm của BC.
Do MN là đường trung bình của hình thang ABCD nên AB // MN // DC.
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Do MC là tia phân giác góc C nên \(\widehat{MND}=\widehat{NCM}\).
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Vậy tam giác NMC cân tại N hay MN = NC.
mà N là trung điểm của BC nên BN = NC.
Suy ra BN = MN = NC. Vậy tam giác MBC cân tại M.
b) Theo tính chất của đường trung bình của tam giác 2MN = AB + DC.
Mà BC = BN + NC = 2NC = 2MN.
Suy ra BC = AB + CD.

11 giờ trước (14:39)

a: Xét tứ giác ABKD có \(\hat{BAD}=\hat{ADK}=\hat{BKD}=90^0\)

nên ABKD là hình chữ nhật

=>AB=DK và BK=AD

AB=DK

mà AB=4cm

nên DK=4cm

Ta có: DK+KC=DC

=>KC=DC-DK=9-4=5(cm)

ΔBKC vuông tại K

=>\(BK^2+KC^2=BC^2\)

=>\(BK^2=13^2-5^2=144=12^2\)

=>BK=12(cm)

mà BK=AD

nên AD=12cm

M là trung điểm của AD

=>\(AM=MD=\frac{AD}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)

b: Xét ΔABM vuông tại A và ΔDMC vuông tại D có

\(\frac{AB}{DM}=\frac{AM}{DC}\left(\frac46=\frac69=\frac23\right)\)

Do đó: ΔABM~ΔDMC

c: ΔABM~ΔDMC

=>\(\hat{ABM}=\hat{DMC}\)

\(\hat{ABM}+\hat{AMB}=90^0\) (ΔAMB vuông tại A)

nên \(\hat{DMC}+\hat{AMB}=90^0\)

Ta có: \(\hat{AMB}+\hat{BMC}+\hat{CMD}=180^0\)

=>\(\hat{BMC}=180^0-90^0=90^0\)

21 tháng 6 2018

( Tự vẽ hình )

a) Xét  \(\Delta ABE\)và  \(\Delta KCE\)có :

\(\widehat{CEK}=\widehat{BEA}\)( đối đỉnh )

\(CE=EB\left(gt\right)\)

\(\widehat{KCB}=\widehat{CBA}\left(DK//AB\right)\)

\(\Rightarrow\Delta ABE=\Delta KCE\left(g-c-g\right)\left(đpcm\right)\)

b)  \(\Rightarrow AE=EK\)

Xét \(\Delta ADK\)có AE = EK \(\Rightarrow DE\)là trung tuyến  \(\Delta ADK\)

Mà DE là đường phân giác  \(\Delta ADK\)

\(\Rightarrow\Delta ADK\)cân tại D ( đpcm )

c) \(\Rightarrow\)DE là đường cao \(\Delta ADK\)

\(\Rightarrow\widehat{AED}=90^o\left(đpcm\right)\)

25 tháng 8 2018

ádfgh