Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B N C D M
a) Gọi tia phân giác góc C là CM và N là trung điểm của BC.
Do MN là đường trung bình của hình thang ABCD nên AB // MN // DC.
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Do MC là tia phân giác góc C nên \(\widehat{MND}=\widehat{NCM}\).
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Vậy tam giác NMC cân tại N hay MN = NC.
mà N là trung điểm của BC nên BN = NC.
Suy ra BN = MN = NC. Vậy tam giác MBC cân tại M.
b) Theo tính chất của đường trung bình của tam giác 2MN = AB + DC.
Mà BC = BN + NC = 2NC = 2MN.
Suy ra BC = AB + CD.

a: Xét tứ giác ABKD có \(\hat{BAD}=\hat{ADK}=\hat{BKD}=90^0\)
nên ABKD là hình chữ nhật
=>AB=DK và BK=AD
AB=DK
mà AB=4cm
nên DK=4cm
Ta có: DK+KC=DC
=>KC=DC-DK=9-4=5(cm)
ΔBKC vuông tại K
=>\(BK^2+KC^2=BC^2\)
=>\(BK^2=13^2-5^2=144=12^2\)
=>BK=12(cm)
mà BK=AD
nên AD=12cm
M là trung điểm của AD
=>\(AM=MD=\frac{AD}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
b: Xét ΔABM vuông tại A và ΔDMC vuông tại D có
\(\frac{AB}{DM}=\frac{AM}{DC}\left(\frac46=\frac69=\frac23\right)\)
Do đó: ΔABM~ΔDMC
c: ΔABM~ΔDMC
=>\(\hat{ABM}=\hat{DMC}\)
mà \(\hat{ABM}+\hat{AMB}=90^0\) (ΔAMB vuông tại A)
nên \(\hat{DMC}+\hat{AMB}=90^0\)
Ta có: \(\hat{AMB}+\hat{BMC}+\hat{CMD}=180^0\)
=>\(\hat{BMC}=180^0-90^0=90^0\)


( Tự vẽ hình )
a) Xét \(\Delta ABE\)và \(\Delta KCE\)có :
\(\widehat{CEK}=\widehat{BEA}\)( đối đỉnh )
\(CE=EB\left(gt\right)\)
\(\widehat{KCB}=\widehat{CBA}\left(DK//AB\right)\)
\(\Rightarrow\Delta ABE=\Delta KCE\left(g-c-g\right)\left(đpcm\right)\)
b) \(\Rightarrow AE=EK\)
Xét \(\Delta ADK\)có AE = EK \(\Rightarrow DE\)là trung tuyến \(\Delta ADK\)
Mà DE là đường phân giác \(\Delta ADK\)
\(\Rightarrow\Delta ADK\)cân tại D ( đpcm )
c) \(\Rightarrow\)DE là đường cao \(\Delta ADK\)
\(\Rightarrow\widehat{AED}=90^o\left(đpcm\right)\)