K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

A B C M F E 1 1 2

ΔABC vuông tại A (gt) => góc C = 45o

AM là trung tuyến nên AM _|_ BC và góc A1 = 45o, ΔAME và  ΔCMF có góc A1 = góc C (=45o)

AM = CM ( = 1/2BC) ; M1 = M2 (phụ với góc AME) 

Vậy ΔAME = ΔCMF (g-c-g), suy ra AE = CF (đpcm)

9 tháng 3 2017

bạn có câu trả lwoif bài này chưa

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

bài này giống bài 33 phần TH bằng nhau thứ hai của tam giác trong sách Nâng cao và phát triển Toán 7 đó bn

7 tháng 2 2021

nhưng bài có cho gì đâu

22 tháng 2 2018

a, Bạn chứng minh : tam giác ABH=EBH ( hai cạnh góc vuông) => AB=BE

tam giác ABM=CMF ( c.g.c ) => CF=AB 

=> BE=CF=AB

22 tháng 2 2018

b, Chứng minh tam giác AHM=EHM ( hai cạnh góc vuông )

=> AM=EM mà AM=AF nên ME=MF (đpcm)

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui

Bài 1:Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CBlấy điểm N sao cho MB = CN. Từ B hạBE AM ( E AM) ⊥ , từ C hạCF AN ( F AN) ⊥ Chứng minh rằng:a/ Tam giác AMN cân b/ BE = CF c/  BME = CNFBài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đườngthẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BACBài 3:...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ

BE AM ( E AM) ⊥ 

, từ C hạ

CF AN ( F AN) ⊥ 

Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/

  BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ

BE d ( E d) ⊥ 

, từ C hạ

CF d ( F d) ⊥ 

. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥

và trên tia HM lấy điểm E sao cho HM = EM. Kẻ

HN AB ⊥

và trên tia

HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.

0