Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Tam giác ABC có ∠(BAC) = 90o
Vì CA là đường cao xuất phát từ đỉnh C; BA là đường cao xuất phát từ đỉnh B
Và hai đường cao này cắt nhau tại A nên A là trực tâm của ΔABC.
*Tam giác AHB có ∠(AHB) = 90o
Vì AH là đường cao xuất phát từ đỉnh A, BH là đường cao xuất phát từ đỉnh B và giao điểm của hai đường này là H.
Vậy H là trực tâm của ΔAHB.
*Tam giác AHC có ∠(AHC) = 90o
Vì AH là đường cao xuất phát từ đỉnh A, CH là đường cao xuất phát từ đỉnh C và giao điểm của hai đường này là H.
Vậy H là trực tâm của ΔAHC.
Xét ΔACB có
AK,BN là các đườg cao
AK cắt BN tại M
=>M là trực tâm
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: góc MAH=góc BAH
góc BAH=góc MHA
=>góc MAH=góc MHA
=>ΔMAH cân tại M
c: Xét ΔACB có
H la trung điểm của CB
HM//AB
=>M là trung điểm của AC
=>B,G,M thẳng hàng
Hnay có nhiều tamgiac vuông ghê :)), ko vẽ nổi đg cao tại vì tớ ko bt vẽ trên này.
A B C P/S : t/c minh họa H G
a, Bỏ qua đi >:
b, Xét \(\Delta\)AHB và \(\Delta\)AHC ta có
^AHB = ^AHC = 90^0
AH_chung
AB = AC (gt)
=> \(\Delta\)AHB = \(\Delta\)AHC (ch-cgn)
b, Xét \(\Delta\)ABH có ^H = 90^0
AB = 10cm ; \(BH=\frac{BC}{2}=\frac{12}{2}=6\)cm
Aps dụng đinh lí Py ta go ta có :
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2\Leftrightarrow AH^2=100-36=84\Leftrightarrow AH=8\)cm
c, Vì \(\Delta\)ABC cân tại A
=> AH là đường cao đồng thời là đường trung truyến
Mà G là trọng tâm của \(\Delta\)ABC
=> G \(\in\)AH
Hay 3 điểm A;G;H thẳng hàng
sh-cgn )): cho xin lỗi ... ẩu quá
Sửa thành : ch-cgv bn nhé !
Trực tâm của ΔABC là đỉnh A
Trực tâm của ΔAHB là đỉnh H
Trực tâm của ΔAHC là đỉnh H