K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 6 2019

Lời giải:

Gọi độ dài $BH=a$ cm ($a>0$)

Áp dụng định lý Pitago cho tam giác vuông $ABH$:

\(AH^2=AB^2-BH^2=4^2-a^2=16-a^2(1)\)

Xét tam giác $ABH$ và $CAH$ có:

\(\widehat{AHB}=\widehat{CHA}(=90^0)\)

\(\widehat{ABH}=\widehat{CAH}(=90^0-\widehat{BAH})\)

\(\Rightarrow \triangle ABH\sim \triangle CAH(g.g)\Rightarrow \frac{AH}{BH}=\frac{CH}{AH}\)

\(\Leftrightarrow AH^2=BH.CH=6a(2)\)

Từ \((1);(2)\Rightarrow 16-a^2=6a\Leftrightarrow (a-2)(a+8)=0\)

\(\Rightarrow BH=a=2\) (cm) do $a>0$)

AH
Akai Haruma
Giáo viên
24 tháng 6 2019

Hình vẽ:

a: BC=4+5=9(cm)

\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)

\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)

b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)

\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

22 tháng 9 2015

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

28 tháng 9 2021

28 tháng 9 2021

undefined