Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=4+5=9(cm)
\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)
b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)
\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Lời giải:
Gọi độ dài $BH=a$ cm ($a>0$)
Áp dụng định lý Pitago cho tam giác vuông $ABH$:
\(AH^2=AB^2-BH^2=4^2-a^2=16-a^2(1)\)
Xét tam giác $ABH$ và $CAH$ có:
\(\widehat{AHB}=\widehat{CHA}(=90^0)\)
\(\widehat{ABH}=\widehat{CAH}(=90^0-\widehat{BAH})\)
\(\Rightarrow \triangle ABH\sim \triangle CAH(g.g)\Rightarrow \frac{AH}{BH}=\frac{CH}{AH}\)
\(\Leftrightarrow AH^2=BH.CH=6a(2)\)
Từ \((1);(2)\Rightarrow 16-a^2=6a\Leftrightarrow (a-2)(a+8)=0\)
\(\Rightarrow BH=a=2\) (cm) do $a>0$)
Hình vẽ: