Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo ở đây,mình vừa mới làm luôn
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-biet-ab6cm-bh3-cm-tinh-ahbchc.1230862563534
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=6^2-3^2=27\)
hay \(AH=3\sqrt{3}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(3\sqrt{3}\right)^2}{3}=9\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow AC^2=\left(3\sqrt{3}\right)^2+9^2=108\)
hay \(AC=6\sqrt{3}\left(cm\right)\)
a) ÁP dụng Pytago ta có: AH2 + HB2 = AB2
=> AB2 = 62 + 4,52 =56,25
=> AB = 7,5
Áp dụng hệ thức lượng ta có: AB2 = BH.BC
=> \(BC=\frac{AB^2}{BH}=12,5\)
=> \(HC=BC-BH=12,5-4,5=8\)
Áp dụng hệ thức lượng ta có:
\(AC^2=HC.BC\)
=> \(AC=\sqrt{HC.BC}=10\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)
và \(BC=12,5\left(cm\right)\)
\(b,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)
a: BC=4+5=9(cm)
\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)
b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)
\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)
BC=BH+CH=13cm
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC; AB^2=BH*BC; AC^2=CH*BC
=>\(AH=\sqrt{4\cdot9}=6\left(cm\right);AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right);AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
a) áp dụng hệ thức lượng ta có:
\(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{4^2}{5}=\frac{16}{5}=3,2\)CM
=> BC=BH+CH= 5+3,2=8,2 CM
\(AB^2=BH.BC=5.8,2\Rightarrow AB=\sqrt{41}\)
\(AC^2=CH.BC=3,2.8,2\Rightarrow AC=\sqrt{26,24}\)
B) \(AB^2=BH.BC\Rightarrow BC=\frac{AB^2}{BH}=\frac{12^2}{6}=24\)
từ đó tính các cái còn lại nha. cái nào k tính đc thì pm mình
xét tam giác abc vuông tại a, đường cao ah:
+bc^2=ab^2 +ac^2 (đ/ly pitago)
bc^2=4^2+6^2
→ bc ≈ 7,2
+ab^2=bh.bc (htl)
4^2=bh.7.2
→bh≈2,2
+ac^2=ch.bc (htl)
6^2=ch.7,2
→ch=5
+ah^2=hb.hc (htl)
ah^2=2,2.5
ah ≈3,3