Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, đường cao AH=\(\sqrt{125}\)cm và \(\frac{HB}{HC}=\frac{1}{5}\).Tính BC
a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ
cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2
TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2 ÁP DỤNG PITA GO TÌM RA CẠNH bc
b,
Hình bạn tự vẽ
Ta có: \(\frac{HB}{HC}=\frac{1}{4}\Leftrightarrow HC=4HB\)
Thay vào ta được: \(HB+HC=BC\)
\(\Leftrightarrow HB+4HB=15\)
\(\Leftrightarrow5HB=15\)
\(\Rightarrow HB=3\left(cm\right)\)
\(\Rightarrow HC=4\cdot3=12\left(cm\right)\)
Từ đó ta dễ dàng tính được: \(AH^2=BH\cdot HC=3\cdot12=36\)
\(\Rightarrow AH=6\left(cm\right)\)
Vậy AH = 6cm
Đặt \(\frac{HB}{1}=\frac{HC}{4}\)thì HB=k, HC=4k.
Ta có: \(AH^2=HB.HC\Rightarrow14^2=4k^2\Rightarrow14=2k\Rightarrow k=7\)
Do đó: HB=7(cm) , HC= 4.7=28(cm), BC=7+28=35(cm)
a.Tu gia thuyet suy ra:\(AC=20\left(cm\right)\)
Ta co:\(AH=\frac{AB.AC}{\sqrt{AB^2+AC^2}}=\frac{15.20}{\sqrt{15^2+20^2}}=20\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{225+400}=\sqrt{625}=25\left(cm\right)\)
b.Ta co:\(BH=\frac{AB^2}{BC}=\frac{225}{25}=9\left(cm\right)\)
\(CH=\frac{AC^2}{BC}=\frac{400}{25}=16\left(cm\right)\)
A B C H
a)Ta có: AB/AC=3/4 =)AC=4*AB/3=4*15/3=2
áp dụng đjnh lí Pytago tong tam giác vuông ABC, ta có:
BC^2=AB^2+AC^2
=15^2+20^2
= 225+400
=625
BC = căn 625=25
Vì ABC là tam giác vuông nên
áp dụng hệ thức lượng, ta dc
AB^2=HB*BC
hay 15^2=HB*25
HB=225/25=9
=)HC=25-9=16
và AH^2=HB*HC
=9*16=144
AH=căn 144=12
câu b là đoạn từ vì tam ABC đến HC=16 NHÉ BN
MK vẽ hình hơi xấu bn thông cảm hihi
\(AB^2=BH.BC=\frac{1}{5}BC.BC\)
\(\Rightarrow BC=\sqrt{5AB^2}=10\left(cm\right)\)