K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

a, HS tự chứng minh

b, HS tự chứng minh

c, HS tự chứng minh

d, ∆MIH:∆MAB

=>  M H M B = I H A B = 2 E H 2 F B = E H F B

=> ∆MHE:∆MBF

=>  M F A ^ = M E K ^  (cùng bù với hai góc bằng nhau)

=> KMEF nội tiếp =>  M E F ^ = 90 0

6 tháng 2 2019

a, Ta đã chứng minh được: AE =  b + c - a 2

=> AE =  a + b + c - 2 a 2 = p – a

∆AIE có IE = EA.tan B A C ^ 2

= (p – a).tan B A C ^ 2

b, Chú ý: BI ⊥ FD và CIE. Ta có:

B I C ^ = 180 0 - I B C ^ + I C D ^ =  180 0 - 1 2 A B C ^ + A C B ^

180 0 - 1 2 180 0 - B A C ^ =  90 0 + B A C ^ 2

Mà:  E D F ^ = 180 0 - B I C ^ = 90 0 - α 2

c, BH,AI,CK  cùng vuông góc với EF nên chúng song song =>  H B A ^ = I A B ^  (2 góc so le trong)

và  K C A ^ = I A C ^ mà  I A B ^ = I A C ^ nên  H B A ^ = K C A ^

Vậy: ∆BHF:∆CKE

d, Do BH//DP//CK nên  B D D C = H P P K mà DB = DF và CD = CE

=>  H P P K = B F C E = B H C K => ∆BPH:∆CPK =>  B P H ^ = C P E ^

Lại có:  B F P ^ = C E F ^ => ∆BPF:∆CEP (g.g)

mà  B P D ^ = C P D ^ => PD là phân giác của  B P C ^

3 tháng 6 2021

mọi người giúp mình nha

cảm ơn nhiều ạ ^^

3 tháng 6 2021

a. xét MEFC có:

∠MEC=90 (ME⊥BC)

∠MFC=90 (MF⊥AC)

⇒∠MEC=∠MFC=90

⇒tứ giác MEFC nội tiếp

xét tứ giác DBEM có

∠BDM+∠BEM=180

⇒ tứ giác DBEM nội tiếp⇒∠DBM=∠DEM

a: góc EMC+góc EFC=180 độ

=>EMFC nội tiếp

góc MDB=góc MEB=90 độ

=>MEDB nội tiếp

=>góc DBM=góc DEM

b: góc DEF=góc DEM+góc FEM

=180 độ-góc ABM+góc FCM

=180 độ

=>D,F,E thẳng hàng

 

a: góc MDB+góc MFB=180 độ

=>MDBF nội tiếp

góc MEC=góc MDC=90 độ

=>MDEC nội tiếp

b: Xét ΔMEC vuông tại E và ΔMFB vuông tại F có

góc MCE=góc MBF

=>ΔMEC đồng dạng với ΔMFB

=>ME/MF=MC/MB

=>ME*MB=MF*MC và góc EMC=góc FMB

=>góc FMB+góc BME=180 độ

=>F,M,E thẳng hàng

21 tháng 6 2021

a) Ta có: \(\angle MEC=\angle MFC=90\Rightarrow MEFC\) nội tiếp

Ta có: \(\angle BDM+\angle BEM=90+90=180\Rightarrow BDME\) nội tiếp

\(\Rightarrow\angle DBM=\angle DEM\)

b) BDME nội tiếp \(\Rightarrow\angle BED=\angle BMD=90-\angle DBM\)

MEFC nội tiếp \(\Rightarrow\angle FEC=\angle FMC=90-\angle ACM\)

mà \(\angle DBM=\angle ACM\) (ABMC nội tiếp)

\(\Rightarrow\angle BED=\angle FEC\) mà B,E,C thẳng hàng \(\Rightarrow D,E,F\) thẳng hàng

Xét \(\Delta MBD\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MFC=\angle MDB\\\angle MCA=\angle MBD\end{matrix}\right.\)

\(\Rightarrow\Delta MBD\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MB}{MC}=\dfrac{MD}{MF}\Rightarrow MB.MF=MD.MC\)

c) Kẻ đường cao AH,BI

Ta có: \(\angle ARV=\angle ACB=\angle BVH\left(=90-\angle CBI\right)=\angle AVI\)

\(\Rightarrow\Delta AVR\) cân tại A có \(AC\bot VR\Rightarrow AC\) là trung trực VR

mà F nằm trên AC \(\Rightarrow FV=FR\Rightarrow\Delta FVR\) cân tại F \(\Rightarrow\angle FVR=\angle FRV\)

DF cắt BR tại G

\(\angle GRM=\angle BRM=\angle BCM=\angle ECM=\angle EFM=\angle GFM\)

\(\Rightarrow GRFM\) nội tiếp mà \(MF\parallel GR (\bot AC)\) \(\Rightarrow GRFM\) là hình thang cân

\(\Rightarrow\angle MGR=\angle FRG=\angle FRV=\angle FVR\) \(\Rightarrow VF\parallel GM\)

mà \(MF\parallel GR\) \(\Rightarrow VFMG\) là hình bình hành có GF,VM là các đường chéo nên cắt nhau tại trung điểm mỗi đường 

\(\Rightarrow DF\) đi qua trung điểm VM

undefined

 

21 tháng 6 2021

thank