K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

A H B C 8 8 Vẽ hơi xấu , thông cảm nha ! 

 Bài này bạn áp dụng Pytago và Hệ thức lượng ( ở lớp 9 ) ! 

                                Áp dụng Py-ta-go ta có : AC2=AH2+HC2= 82+82 = 128 => AC = \(\sqrt{128}\)\(8\sqrt{2}\)

                               Rồi bạn áp dụng hệ thức lượng ta tính BC = AC2- HC . ( tính được BC rồi => HB ) 

                                 tiếp tục tính AB = BC2 - AC. Bạn thay số vào là tính được ngay , bài này khá đơn giản với HS lớp 9 ! . CHúc bạn thành công !

a: AB=căn 4,5*12,5=7,5cm

AC=căn 8*12,5=10cm

b: HB=(13+5)/2=9cm

HC=13-9=4cm

AB=căn 9*13=3 căn 13cm

AC=căn 4*13=2căn 13cm

 

20 tháng 8 2021

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow4HB=HC\)

Xét tam giác ABC vuông tại A có đường cao AH:

\(AH^2=BH.HC\)( hệ thức lượng trong tam vuông)

\(\Rightarrow14^2=HB.4HB\Rightarrow HB=7\left(cm\right)\Rightarrow HC=4HB=28\left(cm\right)\Rightarrow BC=HB+HC=35\left(cm\right)\)Xem tam giác ABC vuông tại A có đường cao AH:

\(\left\{{}\begin{matrix}AB^2=HB.BC\\AC^2=HC.BC\end{matrix}\right.\)(Hệ thức lượng trong tam giác vuông)

\(\Rightarrow\left\{{}\begin{matrix}AB^2=7.35\\AC^2=28.35\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\\AC=14\sqrt{5}\end{matrix}\right.\)

Ta có: \(P_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)

 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow4\cdot HB^2=14^2=196\)

\(\Leftrightarrow HB^2=49\)

\(\Leftrightarrow HB=7\left(cm\right)\)

\(\Leftrightarrow HC=28\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)

25 tháng 9 2021

Xét tam giác ABH vuông tại H có:

\(AB^2=BH^2+AH^2\left(Pytago\right)\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2^2}=\sqrt{5}\left(cm\right)\)

Áp dụng HTL trong tam giác ABC vg tại A có đg cao AH:

\(AH^2=BH.HC\)

\(\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{\sqrt{5}}=\dfrac{4\sqrt{5}}{5}\left(cm\right)\)

Ta có: \(AC^2=HC^2+AH^2\left(Pytago\right)\)

\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt[]{2^2+\left(\dfrac{4\sqrt{5}}{5}\right)^2}=\dfrac{6\sqrt{5}}{5}\left(cm\right)\)

Ta có: \(BC=HC+BH=\sqrt{5}+\dfrac{4\sqrt{5}}{5}=\dfrac{5+4\sqrt{5}}{5}\left(cm\right)\)

28 tháng 6 2023

TK:

Ta có tam giác vuông ABC với đường cao AH.

Theo định nghĩa, đường cao AH là đoạn thẳng vuông góc với cạnh đối diện và đi qua đỉnh của tam giác.

Vì tam giác ABC vuông tại A, nên AH là đường cao của tam giác.

Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:

\(AB^2+AC^2=BC^2\)

\(4^2+7,5^2=BC^2\)

\(16+56,25=BC^2\)

\(72,25=BC^2\)

\(BC\approx8,5cm\)

Vì AH là đường cao của tam giác ABC, nên AH chia BC thành hai đoạn HB và HC.

\(HB=BC\times\left(\dfrac{AB}{AC}\right)\)

\(HB=8,5\times\left(\dfrac{4}{7,5}\right)\)

\(HB\approx4,53cm\)

\(HC=BC-HB\)

\(HC=8,5-4,53\)

\(HC\approx3,97cm\)

Vậy \(HB\approx4,53cm\) và \(HC\approx3,97cm\)

11 tháng 7 2016

A B C H

Có: góc ABC + góc BAH = 900

      góc HAC + góc BAH = 900

=> góc ABC = góc HAC

Xét tam giác AHC và tam giác BAC có:

     góc ABC = góc HAC (chứng minh trên)

     góc AHC = góc BAC (=900)

=> tam giác AHC đồng dạng với tam giác BAC

\(\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow\frac{AH}{HC}=\frac{AB}{AC}=\frac{5}{7}\Rightarrow HC=\frac{7}{5}.AH=\frac{7}{5}.15=21cm\)

Ta có: \(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{15^2}{21}=\frac{75}{7}cm\)

                                                         Vậy HB = 75/7 cm , HC = 21cm