Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D I K O M N
a) 2 đoạn AD và IK cắt nhau ở O. Nối O với H.
Xét tứ giác AIDK: ^IAK = ^AID = ^AKD = 900 => Tứ giác AIDK là hình chữ nhật
O là tâm của hình chữ nhật AIDK => O là trung điểm AD & IK; OA=OD=OI=OK
Xét \(\Delta\)AHD: ^AHD=900; O là trung điểm AD => OH=OA=OD
=> OH=OI=OK. Trong \(\Delta\)HIK có: O là trung điểm IK; OH=OI=OK
=> \(\Delta\)HIK vuông tại H => ^IHK = 900 (đpcm).
b) Lấy M và N lần lượt là trung điểm của AB và AC.
Xét \(\Delta\)BAD: O là trung điểm AD; M là trung điểm AB => OM là đường trung bình \(\Delta\)BAD
=> OM // BD hay OM // BC. Tương tự: ON // BC
=> 3 điểm M;O;N thẳng hàng => O nằm trên đường trung bình MN cố định của \(\Delta\)ABC
Vậy khi D chạy trên BC thì O (Trung điểm IK) luôn chạy trên đường trung bình của \(\Delta\)ABC.
c) Ta có tứ giác AIDK là hình chữ nhật có 2 đường chéo AD là IK => AD=IK
Mà AD > AH (Q/h đường xiên hình chiếu) nên IK > AH
=> Độ dài ngắn nhất của IK là AH. Dấu "=" xảy ra khi điểm D trùng điểm H.
A B C H E F
a) Xét hai tam giác ABC và HBA có:
\(\widehat{BAC}=\widehat{BHA=1V}\)
\(\widehat{ABC}\left(\widehat{HBA}\right)\): góc chung
Vậy \(\Delta\)ABC ~ \(\Delta\)HBA.
b) Ta có:
AB2 = BH . BC (vì \(\Delta\)ABC ~ \(\Delta\)HBA.)
= 4.13
= 52
\(\Rightarrow\)AB = \(\sqrt{52}=\)\(2\sqrt{13}\)(cm)
Vì \(\Delta\)ABH vuông tại H
\(\Rightarrow\)AH2 = AB2 - BH2
= 36
\(\Rightarrow\)AH = 6(cm)
c) Xét hai tam giác AHE và CHF có:
\(\widehat{HAE}=\widehat{HCF}\)(cùng phụ với \(\widehat{HAC}\))
\(\widehat{AHE}=\widehat{CHF}\) ( cùng phụ với \(\widehat{AHF}\))
Vậy \(\Delta\)AHE ~ \(\Delta\)CHF.
\(\Rightarrow\frac{AE}{CF}=\frac{AH}{CH}\Rightarrow AE.CH=AH.CF\)(đpcm)
d)