Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp
==> 4 điểm B,E,F,C cùng thuộc một đường tròn.
Giải chi tiết:
a) Chứng minh tứ giác AEHF và BCEF nội tiếp.
Ta có ∠AEH=∠AFH=90o⇒∠AEH=∠AFH=90o⇒ E, F thuộc đường tròn đường kính AH
⇒⇒ A, E, H, F cùng thuộc một đường tròn
⇒AEHF⇒AEHF là tứ giác nội tiếp (dhnb).
Ta có ∠BEC=∠BFC=90o⇒∠BEC=∠BFC=90o⇒ BCEF là tứ giác nội tiếp (dhnb)
b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O)(O)(D là tiếp điểm, D thuộc cung nhỏ BC). Chứng minh ID2=IB.ICID2=IB.IC.
Xét ΔIBDΔIBD và ΔIDCΔIDC có:
∠I∠I chung
∠IDB=∠ICD∠IDB=∠ICD (ID là tiếp tuyến của (O)(O))
⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).
c) DE, DF cắt đường tròn (O)(O) tại M và N. Chứng minh NM // EF.
Xét ΔIBEΔIBE và ΔIFCΔIFC có:
∠I∠I chung
∠IEB=∠ICF∠IEB=∠ICF (BCEF là tứ giác nội tiếp)
⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF (kết hợp b)
⇒ID2=IE.IF⇒IDIE=IFID⇒ID2=IE.IF⇒IDIE=IFID
Xét ΔIDFΔIDF và ΔIEDΔIED có:
∠I∠I chung
IDIE=IFID(cmt)IDIE=IFID(cmt)
⇒ΔIDF∼ΔIED⇒∠IDF=∠IED⇒ΔIDF∼ΔIED⇒∠IDF=∠IED (2 góc tương ứng)
Mặt khác ∠IDF=∠NMD∠IDF=∠NMD (ID là tiếp tuyến của (O)(O)) ⇒∠IED=∠NMD⇒∠IED=∠NMD (tc)
Mà hai góc này ở vị trí đồng vị ⇒⇒ NM // EF.
Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá
HD
Câu 1.
Tự CM.
Câu 2:
Kẻ AO cắt đường tròn tại F
Để ý góc ADE=góc EBC=góc AFC
Mà góc CAF+góc FAC =90°
⇒góc ADE+góc FAC =90°hay AF ⊥ DE.
Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.
Câu 3:
Gọi giao CQ và BP là O’
Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)
⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’
⇒ các ΔBQN, ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C
⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
Tham khảo:
a. Để chứng minh tứ giác \(ADHE\) nội tiếp, ta cần chứng minh rằng góc \(DHE\) bằng \(180^\circ\) - tức là góc \(DHE\) là góc ngoài của tam giác \(ABC\) tại đỉnh \(A\), vì khi đó tứ giác \(ADHE\) sẽ nội tiếp.
Xét góc \(DHE\), ta thấy rằng:
\[ \angle DHE = \angle B + \angle C \]
Do \(BD\) và \(CE\) là đường cao của tam giác \(ABC\), nên:
\[ \angle B = \angle EHB \]
\[ \angle C = \angle HDC \]
Vậy:
\[ \angle DHE = \angle EHB + \angle HDC \]
\[ \angle DHE = (180^\circ - \angle B) + (180^\circ - \angle C) \]
\[ \angle DHE = 360^\circ - (\angle B + \angle C) \]
Nhưng ta biết rằng tổng các góc của tam giác \(ABC\) là \(180^\circ\), nên:
\[ \angle DHE = 360^\circ - 180^\circ = 180^\circ \]
Điều này chứng minh tứ giác \(ADHE\) là tứ giác nội tiếp.
b. Để chứng minh \( \angle DEK = \angle DMC \), ta sử dụng tính chất của tứ giác \(ADHE\) nội tiếp đã chứng minh ở câu (a).
Do tứ giác \(ADHE\) là tứ giác nội tiếp, nên:
\[ \angle DHE = 180^\circ - \angle DAE \]
Nhưng ta cũng biết rằng:
\[ \angle DAE = \angle DMC \]
Vậy:
\[ \angle DHE = 180^\circ - \angle DMC \]
\[ \angle DHE + \angle DMC = 180^\circ \]
Giả sử \(HN\) vuông góc với \(AB\) tại \(N\), với \(M\) là trung điểm của \(BC\), thì \(HM\) cũng là đường trung bình của tam giác \(ABC\), nên:
\[ \angle HMC = \angle HNC = 90^\circ \]
Vậy, chúng ta có:
\[ \angle DHE + \angle DMC = 180^\circ = \angle HMC + \angle HNC \]
Vậy, điều phải chứng minh là góc \(DEK\) bằng góc \(DMC\).
a: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp
b: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔBAC
=>AH\(\perp\)BC tại K
Xét tứ giác BEHK có \(\widehat{BEH}+\widehat{BKH}=90^0+90^0=180^0\)
nên BEHK là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
Ta có: \(\widehat{DEH}=\widehat{DAH}\)(AEHD nội tiếp)
\(\widehat{KEH}=\widehat{KBH}\)(BEHK nội tiếp)
mà \(\widehat{DAH}=\widehat{KBH}\left(=90^0-\widehat{DCB}\right)\)
nên \(\widehat{DEH}=\widehat{KEH}\)
=>EC là phân giác của góc DEK
=>\(\widehat{DEK}=2\cdot\widehat{HED}\)
mà \(\widehat{HED}=\widehat{HBC}\)(BEDC nội tiếp)
nên \(\widehat{DEK}=\widehat{HBC}\)(1)
ΔDBC vuông tại D
mà DM là đường trung tuyến
nên DM=MB=MC
Xét ΔMDB có \(\widehat{DMC}\) là góc ngoài tại D
nên \(\widehat{DMC}=\widehat{MBD}+\widehat{MDB}=2\cdot\widehat{MBD}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{DEK}=\widehat{DMC}\)