K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= (BD + AD) + (AE + CE)

= AB + AC

Vậy AB = AC = 2(R + r)

DD
23 tháng 5 2021

\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)

\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)

\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)

28 tháng 1 2016

vào hoc24h nhé

28 tháng 1 2016

diện tích =395 nha bạn

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

10 tháng 4 2020

Bài toán phụ: Cho tam giác ABC có \(\widehat{A}=120^o\). Khi đó BC2=AB2+AC2+AB.AC

Chứng minh: Gọi H là hình chiếu của C trên  AB

\(AH=\frac{1}{2}AC;CH=\frac{\sqrt{3}}{2}AC\left(1\right)\)

Theo định lý Pytago, ta có: BC2=BH2+CH(2)

Từ (1)(2) => BC2=(AB+AH)2+CH2=\(\left(AB+\frac{1}{2}AC\right)^2+\left(\frac{\sqrt{3}}{2}AC\right)^2\)

\(=AB^2+AB\cdot AC+\frac{1}{4}AC^2+\frac{3}{4}AC^2=AB^2+AC^2+AB\cdot AC\)

Không mất tính tổng quát giả sử M thuộc cung \(\widebat{BC}\) (không chứa A) của (O) 

Chứng minh được MA=MB+MC

=> MA2=MB2+MC2+2.MB.MC

=> MA2+MB2+MC2=2(MB2+MC2+MB.MC)(3)

Theo BĐ1 ta có: MB2+MC2+MB.MC=BC2

=> MB2+MC2+MB.MC=3R2

Từ (1) (2) => MA2+MB2+MC2=6R2