K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2015

a) Tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng 2/3

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{2}{3}\)=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{AB+BC+AC}{DE+EF+DF}=\frac{2}{3}\)

=> \(\frac{C_{ABC}}{C_{DEF}}=\frac{2}{3}\) (Kí hiệu \(C\) là chu vi) => \(C_{DEF}=\frac{3}{2}.C_{ABC}=\frac{3}{2}.8=12\) cm

b) 

D E F K A B C H

+) Dễ có tam giác DEK đồng dạng với tam giác ABH (do góc DEK = ABH; góc DKE = AHB)

=> \(\frac{AB}{DE}=\frac{AH}{DK}\) Mà \(\frac{AB}{DE}=\frac{2}{3}\Rightarrow\frac{AH}{DK}=\frac{2}{3}\)

+) Có : \(\frac{S_{ABC}}{S_{DEF}}=\frac{\frac{1}{2}.AH.BC}{\frac{1}{2}.DK.EF}=\frac{AH}{DK}.\frac{BC}{EF}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\)

=> \(S_{ABC}=\frac{4}{9}.S_{DEF}=\frac{4}{9}.27=12\) cm2

*) Tổng quát: Nếu tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng k

=> \(\frac{C_{ABC}}{C_{DEF}}=k;\frac{S_{ABC}}{S_{DEF}}=k^2\)