Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.
Ta cần chứng minh ∆ABC cân tại A.
Kéo dài AD một đoạn DA1 sao cho DA1 = AD.
- ∆ADB và ∆A1DC có
AD = DA1 (cách vẽ)
BD = CD (do D là trung điểm BC)
Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7
⇒ ∆ADB = ∆A1DC (c.g.c)
⇒ Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7 (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)
Giải bài 42 trang 73 SGK Toán 7 Tập 2 | Giải toán lớp 7
⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)
Từ (1) và (2) ⇒ AB = AC.
Vậy ∆ABC cân tại A
Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.
A B C M
Xét tam giác AMB và tam giác AMC ta có:
AM chung
góc BMA = góc CMA (AM là phân giác góc A)
BM = CM (AM là trung tuyến)
=> Tam giác AMB= tam giác AMC (c.g.c)
=> Góc MBA = góc MCA và AB = AC
=> Tam giác ABC cân tại A (Đpcm)
cho em giải khác nhé
A B C D H G
D thuộc phân giác góc A suy ra DH = DG ( tính chất tia phân giác của một góc )
xét hai tam giác vuông BHD và CGD có
DH = DG ( cmt)
DB = DC ( gt)
do đó tam giác BHD = tam giác CGD ( cạnh huyền - góc nhọn )
suy ra góc B = góc C ( 2 góc tương ứng )
tam giác ABC có góc B = góc C suy ra tam giác ABC cân tại A
Giả sử ∆ABC có AD là phân giác ˆBACBAC^ và DB = DC, ta chứng minh ∆ABC cân tại A
Kéo dài AD một đoạn DA1 = AD
Ta có: ∆ADC = ∆A1DC (c.g.c)
Nên ˆBAD=ˆCA1DBAD^=CA1D^
mà ˆBAD=ˆCADBAD^=CAD^ (gt)
=> ˆCAD=ˆCA1DCAD^=CA1D^
=> ∆ACA1 cân tại C
Ta lại có: AB = A1C ( ∆ADB = ∆A1DC)
AC = A1C ( ∆ACA1 cân tại C)
=> AB = AC
Vậy ∆ABC cân tại A
Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân
tam giác ABC có : BE; CF là trung tuyến và cắt nhau tại I
=> AI là trung tuyến (tc)
mà tam giác ABC cân tại A (Gt)
=> AI là phân giác của góc BAC (đl)
a)Xét\(\Delta ABC\)có:\(BE\)là đg trung tuyến xuất phát từ đỉnh\(B\left(GT\right)\)
\(CF\)là đg trung tuyến xuất phát từ đỉnh\(C\left(GT\right)\)
mà\(BE\)cắt\(CF\)tại\(I\)
\(\Rightarrow AI\)là đg trung tuyến xuất phát từ đỉnh\(A\)(Định lí về tính chất 3 đg trung tuyến của 1\(\Delta\))
mà\(\Delta ABC\)cân tại\(A\left(GT\right)\)
\(\Rightarrow AI\)vừa là đg trung tuyến vừa là đg p/g của\(\Delta ABC\)(Tính chất của tg cân)
b)Xét\(\Delta ABI\)và\(\Delta ACI\)có:
\(AI\)là cạnh chung
\(\widehat{BAI}=\widehat{CAI}\)(\(AI\)là tia p/g của\(\widehat{BAC}\))
\(AB=AC\)(\(\Delta ABC\)cân tại\(A\))
Do đó:\(\Delta ABI=\Delta ACI\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)(2 cạnh t/ứ)
\(BI=CI\)(2 cạnh t/ứ)
Xét\(\Delta ABE\)và\(\Delta ACF\)có:
\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)
\(AB=AC\)(\(\Delta ABC\)cân tại\(A\))
mk chưa đc học trung tuyến
mk fan BP nek