Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-3\right)\left(x-2\right)< 0\)
Ta có : \(x-2>x-3\)
\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy \(2< x< 3\)
b) \(3x+x^2=0\)
\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{-3;0\right\}\)
A B H E C D I
Từ D hạ DI vuông góc với AH sao cho I thuộc AH => Góc AID = 90 độ
Xét tam giác vuông ABH và tam giác vuông DIA có: AB=AD (gt),
\(\widehat{A_1}+\widehat{A_2}=90^o\) mà \(\widehat{A_2}+\widehat{D_1}=90^o\) => \(\widehat{A_1}=\widehat{D_1}\) , \(\widehat{AID}=\widehat{AHB}=90^o\)
=> Tam giác AHB= tam giác DIA (ch-gn) => AH=DI (1)
Xét tứ giác IHDE có : \(\widehat{HID}=\widehat{IHE}=\widehat{HED}=90^o\) => Tứ giác IHED là hình chữ nhật => HE=DI (2)
Từ (1) và (2) => HA=HE => đpcm
A M E B D C
a) Vì \(\widehat{ACE}\) và \(\widehat{BAC}\) là hai góc so le trong
=> \(AB//CE\) ( tính chất hai đường thẳng song song )
b) Vì AD là tia phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAD}=\widehat{DAC}\)
Vì CM là tia phân giác của \(\widehat{ACE}\Rightarrow\widehat{ACM}=\widehat{MCE}\)
Ta có : \(\widehat{ACE}=\widehat{BAC}\) ( so le trong )
=>\(\dfrac{1}{2}\widehat{ACE}=\dfrac{1}{2}\widehat{BAC}\)
hay \(\widehat{DAC}=\widehat{ACM}\)
Mà hai góc này nằm ở vị trí so le trong \(\Rightarrow AD//CM\)
a. Ta có: \(\widehat{BAC}=\widehat{ACE}\left(gt\right)\)
Mà hai góc này ở vị trí số le trong
\(\Rightarrow AB//CE\)
b. Ta có: \(\widehat{BAD}=\widehat{CAD}=\dfrac{1}{2}\widehat{BAC}\) (AD là phân giác của \(\widehat{BAC}\))
\(\widehat{ACM}=\widehat{MCE}=\dfrac{1}{2}\widehat{ACE}\) (CM là phân giác của \(\widehat{ACE}\) )
Mà \(\widehat{BAC}=\widehat{ACE}\left(gt\right)\)
\(\Rightarrow\widehat{CAD}=\widehat{ACM}\) mà hai góc này ở vị trí so le trong
\(\Rightarrow AD//CM\)
A B C M H N K
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB = AC (\(\Delta ABC\) cân tại A)
AM chung
BM = CM (suy từ gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
hay \(\widehat{HBM}=\widehat{KCM}\)
Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;
BM = CM
\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)
\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)
Vì \(\Delta ABM=\Delta ACM\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)
\(\Rightarrow\Delta ABM\) vuông tại M
Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=17^2-8^2\)
\(\Rightarrow AM^2=15^2\)
\(\Rightarrow AM=15\)
Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)
Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).
mk ko chép đề mà tách luôn nha
M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
A B C E D F 1 2
a) Vì BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
Nên AB2 + AC2 = BC2
Do đó: \(\Delta ABC\) vuông tại A
b) Xét hai tam giác vuông ABD và EBD có:
BD: cạnh huyền chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
Suy ra: DA = DE (hai cạnh tương ứng)
c) \(\Delta DAF\) vuông tại A
=> DF > DA (đường vuông góc ngắn hơn đường xiên)
Mà DA = DE
Do đó: DF > DE (đpcm)
d) Xét hai tam giác vuông ABC và EBF có:
AB = EB (\(\Delta ABD=\Delta EBD\))
\(\widehat{B}\): góc chung
Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)
\(\Rightarrow\) BF = BC (hai cạnh tương ứng)
\(\Rightarrow\) \(\Delta BFC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC
Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).
a) Ta có :
\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )
b) Xét \(\Delta DBA\) và \(\Delta DBE\),có :
Chung cạnh BD
\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )
\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)
Hình bạn tự vẽ nha!
Goi G là diem doi xung voi A qua M.
Cm dc AG=4+4=8,CG=BA=6,AB=CG=6 (ACGB là hbh)
Suy ra tg ACG vuong tai G (Pythagoras dao,6^2+8^2=10^2)
Suy ra goc AGC=90°
Suy ra goc MAB=90° (AB//CG).
M A B C G
Gọi G là điểm đối xứng qua với A qua M.
Vì \(AM=4\Rightarrow\) \(AG=AM+MG=4+4=8\left(cm\right)\)
Vì \(AB=6\Rightarrow CG=6\)
\(\Rightarrow ABGC\) là hình bình hành.
Áp dụng định lý pitago ở \(\Delta ACG\) có:
\(AC^2=GA^2+GC^2\)
\(\Rightarrow10^2=6^2+8^2\)
\(\Rightarrow100=100\) (đúng)
\(\Rightarrow\Delta AGC\) vuông tại G
\(\Rightarrow\widehat{AGC}=90^o\)
\(\Rightarrow\widehat{MAB}=90^o\) (do A đối xứng với G qua M)