K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆ ABC có : 

AH là đường cao đồng thời là trung tuyến 

=> ∆ABC cân tại A 

b) Vẽ E là trung điểm Kẻ CE 

Vì ∆ABC cân tại A 

=> AB = AC 

=> ABC = ACB 

Vì D là trung điểm AB

=> AD = DB 

Vì E là trung điểm AC 

=> AE = EC 

=> AE = EC = AD = DB 

Xét ∆ EBC và ∆ DCB ta có : 

BC chung 

CE = BD ( cmt)

ACB = ABC ( cmt)

=> ∆EBC = ∆DCB (c.g.c)

=> DCB = EBC ( tg ứng) 

Mà ABC = ACB 

=> ACD = ABE 

Vì D là trung điểm AB 

=> CD là trung tuyến AB 

=> CD là phân giác ACB 

Vì E là trung điểm AC 

=> BE là trung tuyến AB 

=> BE là phân giác ABC 

=> DCB = ACD 

=> ABE = EBC 

=> DCB = 180° - \(\frac{1}{2}\)ACB - \(\frac{1}{2}\)ABC 

Mà ACB = ABC = 30° 

=> DCB = 180° - \(\frac{60°}{4}\)= 15°

28 tháng 7 2019

bạn tự vẽ hình

a) tam giác vuông AHC có:

\(\widehat{C}=30^o\Rightarrow AH=\frac{1}{2}.AC\)(trong 1 t/g vuông, cạnh đối diện 1 góc 30 độ = 1 nửa cạnh huyền)

mà \(AH=\frac{1}{2}.BC\Rightarrow BC=AC\Rightarrow\Delta ABC\text{ cân tại }C\)

Vậy ...

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AM=EF

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

=>AH=4,8cm

c: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Ta có: ΔAHC vuông tại H

mà HF là đường trung tuyến

nên HF=AC/2=AF

mà AF=ME

nên HF=ME

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: FE là đường trung bình

=>FE//BC

Xét tứ giác EHMF có

MH//FE

Do đó: EHMF là hình thang

mà EM=HF

nên EHMF là hình thang cân

18 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE
b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//MC và DE=MC

Xét tứ giác DMCE có

DE//MC

DE=MC

Do đó: DMCE là hình bình hành

c: ΔHAC vuông tại H có HE là trung tuyến

nên \(HE=\dfrac{1}{2}AC\)

mà \(MD=\dfrac{1}{2}AC\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

nên DHME là hình thang

mà HE=MD

nên DHME là hình thang cân

ΔHAB vuông tại H

mà HD là trung tuyến

nên HD=AD

EA=EH

DA=DH

Do đó: ED là đường trung trực của AH

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: ΔABD=ΔACE

=>góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.a)     Chứng minh tam giác ABK cân tại Bb)    Chứng minh DK vuông góc BCc)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HACd)    Gọi I là giao điểm của AH và BD. Chứng minh IK//ACBài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).a)     So sánh góc ABC và góc ACB. Tính góc ABH.b)    Vẽ AD là phân...
Đọc tiếp

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

 

1
17 tháng 3 2019

Ngắn nhở -.-

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC