K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

Chúc bạn học tốt nhó!!
Ta có: S=\(\frac{1}{2}\)AB.AC.sinA
       => sinA= \(\frac{2S}{AB.AC}\)=\(\frac{2.12}{5.8}\)=\(\frac{3}{5}\)
=>\(\widehat{A}\)\(\approx\)36,87
Lại có: BC\(^2\)=AC^2+AB^2-2AC.AB.cosA=5^2+8^2-2.5.8.cos36,87\(\approx\)25
=> BC=5

\(S_1=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinB\)

\(S_2=\dfrac{1}{2}\cdot3\cdot BC\cdot\dfrac{1}{2}\cdot AB\cdot sinC=\dfrac{3}{4}\cdot BC\cdot AB\cdot sinC\)

=>\(\dfrac{S_2}{S_1}=\dfrac{3}{4}:\dfrac{1}{2}=\dfrac{3}{2}\)

=>Diện tích mới tạo thành bằng 3/2 lần diện tích cũ

24 tháng 3 2022

6S

24 tháng 3 2022

undefined

tham khảo

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
12 tháng 11 2023

Xét ΔABC có

\(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)

=>\(\dfrac{8^2+6^2-AB^2}{2\cdot6\cdot8}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(100-AB^2=48\sqrt{3}\)

=>\(AB=\sqrt{100-48\sqrt{3}}\simeq4,11\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinC\)

\(=\dfrac{1}{2}\cdot6\cdot8\cdot sin30=3\cdot8\cdot\dfrac{1}{2}=3\cdot4=12\)

 

12 tháng 11 2023

 

\(AB=\sqrt{AC^2+BC^2-2.AC.BC.cosC}\)

\(AB=4,11\)

\(S_{ABC}=\dfrac{1}{2}. AC.BC.sinC\)

\(S_{ABC}=\dfrac{1}{2}. 8.6.sin 30^o\)

\(S_{ABC}=12\)

 

 

 

 

11 tháng 1 2018

Chọn D.

Diện tích tam giác ABC  ban đầu là

Khi tăng cạnh BC lên 2 lần và cạnh AC lên 3 lần thì diện tích tam giác ABC lúc này là

31 tháng 12 2015

???ng tr�n f: ???ng tr�n qua B v?i t�m M ???ng tr�n k: ???ng tr�n qua A, B, C ???ng tr�n p: ???ng tr�n qua A, D, E G�c ?: G�c gi?a A, E, D G�c ?: G�c gi?a A, E, D G�c ?: G�c gi?a A, I, D G�c ?: G�c gi?a A, I, D G�c ?: G�c gi?a C, B, A G�c ?: G�c gi?a C, B, A G�c ?: G�c gi?a C, B, I G�c ?: G�c gi?a C, B, I G�c ?: G�c gi?a C, B, I G�c ?: G�c gi?a B, A, J G�c ?: G�c gi?a B, A, J G�c ?: G�c gi?a B, A, J G�c ?: G�c gi?a B, C, J G�c ?: G�c gi?a B, C, J G�c ?: G�c gi?a B, C, J ?o?n th?ng a: ?o?n th?ng [B, C] ?o?n th?ng b: ?o?n th?ng [A, M] ?o?n th?ng d: ?o?n th?ng [A, B] ?o?n th?ng e: ?o?n th?ng [A, C] ?o?n th?ng g: ?o?n th?ng [E, B] ?o?n th?ng h: ?o?n th?ng [D, C] ?o?n th?ng l: ?o?n th?ng [D, I] ?o?n th?ng m: ?o?n th?ng [I, B] ?o?n th?ng n: ?o?n th?ng [B, J] ?o?n th?ng q: ?o?n th?ng [J, C] ?o?n th?ng r: ?o?n th?ng [M, J] ?o?n th?ng s: ?o?n th?ng [I, C] ?o?n th?ng t: ?o?n th?ng [D, E] B = (-1.94, -0.04) B = (-1.94, -0.04) B = (-1.94, -0.04) C = (4, 0) C = (4, 0) C = (4, 0) ?i?m M: Trung ?i?m c?a B, C ?i?m M: Trung ?i?m c?a B, C ?i?m M: Trung ?i?m c?a B, C ?i?m A: ?i?m tr�n c ?i?m A: ?i?m tr�n c ?i?m A: ?i?m tr�n c ?i?m D: Giao ?i?m c?a f, d ?i?m D: Giao ?i?m c?a f, d ?i?m D: Giao ?i?m c?a f, d ?i?m E: Giao ?i?m c?a f, e ?i?m E: Giao ?i?m c?a f, e ?i?m E: Giao ?i?m c?a f, e ?i?m I: Giao ?i?m c?a p, b ?i?m I: Giao ?i?m c?a p, b ?i?m I: Giao ?i?m c?a p, b ?i?m J: Giao ?i?m c?a k, j ?i?m J: Giao ?i?m c?a k, j ?i?m J: Giao ?i?m c?a k, j

Ta có ADIE và BDCE là các tứ giác nội tiếp nên $\widehat{AID}=\widehat{AEI}=\widehat{ABC}$.

Suy ra BDIM nội tiếp.

Suy ra $AI.AM=AD.AB=AM^2-BM^2=3BM^2$ (vì AM=BC)

Suy ra $AI=\dfrac{3}{2}BM$ và $IM=AM-AI=\dfac{1}{2}BM$

Do đó $MI.MA=BM^2$, suy ra hai tam giác BIM và ABM đồng dạng theo c.g.c

Suy ra $\widehat{BIM}=\widehat{BAM}=\widehat{BCJ}$

Suy ra BI//CJ. Theo Talet thì $\dfrac{BI}{CJ}=\dfrac{BM}{CM}=1$.

Vậy $BICJ$ là hình bình hành.

 

21 tháng 2 2016

Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.

a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?

b) Xác định vị trí của C trên nửa đường tròn tâm O để đường tròn ngoại tiếp tam giác MNQ tiếp xúc với (O).

Bài 12: Cho tứ giác ABCD có đường chéo BD không là phân giác của góc ABC và góc CDA.Một điểm P nằm trong tứ giác sao cho góc PBC=góc DBA; góc PDC = góc BDA.Chứng minh rằng tứ giác ABCD nội tiếp khi và chỉ khi AP=CP

Bài 13:Cho tam giác ABC có chu vi bằng 2p không đổi ngoại tiếp 1 đường tròn(O).Dựng tiếp tuyến MN với (O) sao cho MN song song với AC;M thuộc cạnh AB,N thuộc cạnh BC.Tính AC theo p để độ dài đoạn MN đạt giá trị lớn nhất.

Bài 14: Trong một tam giác cho trước hãy tìm bán kính lớn nhất của hai đường tròn bằng nhau tiếp xúc ngoài nhau đồng thời mỗi đường tròn tiếp xúc với hai cạnh của tam giác đó.

Bài 15: Trên cạnh AB của tam giác ABC lấy một điểm D sao cho đường tròn nột tiếp tam giác ACD và BCD bằng nhau

a) Tính đoạn CD theo các cạnh của tam giác

b)CMR: Điều kiện cần và đủ để góc C = 90 độ là điện tích tam giác ABC bằng diện tích hình vuông cạnh CD

Bài 16: Cho hình thang vuông ABCD có AB là cạnh đáy nhỏ,CD là cạnh đáy lớn,M là giao của AC và BD.Biết rằng hình thang ABCD ngoại tiếp đường tròn bán kính R.Tính diện tích tam giác ADM theo R

Bài 17:Cho tam giác ABC không cân,M là trung điểm cạnh BC,D là hình chiếu vuông góc của A trên BC; E và F tương ứng là các hình chiếu vuông góc của B và C trên đường kính đi qua A của đường tròn ngoại tiếp tam giác ABC.CMR: M là tâm đường tròn ngoại tiếp tam giác DEF

Bài 18: Cho đoạn thẳng AB, điểm C nằm giữa A và B, Tia Cx vuông góc với AB.Trên tia Cx lấy D và E sao cho CECB=CACD=3√CECB=CACD=3. Đường tròn ngoại tiếp tam giác ADC cắt đường tròn ngoại tiếp tam giác BEC tại H(H khác C). CMR: HC luôn đi qua một điểm cố định khi C chuyển động trên đoạn AB.Bài toán còn đúng không khi thay 3√3 bởi m cho trước(m>0)

Bài 19: Cho tam giác ABC nhọn và điểm M chuyện động trên đường thẳng BC.Vẽ trung trực của các đoạn BM và CM tương ứng cắt các đường thẳng AB và AC tại P và Q.CMR: Đường thẳng qua M và vuông góc với PQ đi qua 1 điểm cố định

Bài 20: Cho tam giác ABC và một đường tròn (O) đi qua A và C.Gọi K và N là các giao điểm của (O) với các cạnh AB,C.ĐƯờng tròn (O1) và (O2) ngoại tiếp tam giác ABC và tam giác KBN cắt nhau tại B và M.CMR: O1O2 song song với OM

 

hộ t 1 số bài tập với

27 tháng 10 2023

a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)

=>\(\widehat{A}\simeq50^0\)

b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)

=>\(25+64-BC^2=40\)

=>\(BC^2=49\)

=>BC=7

28 tháng 2 2018

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

a) Do tam giác ABC là tam giác đều nên Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10 .

Theo định lý côsin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lý sin trong tam giác ABM ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

c) Ta có: BM + MC = BC nên MC = BC – BM = 6 - 2 = 4 cm.

Gọi D là trung điểm AM.

Áp dụng công thức độ dài đường trung tuyến trong tam giác ta có:

Giải bài 4 trang 99 SGK hình học 10 | Giải toán lớp 10

NV
26 tháng 12 2022

Áp dụng định lý hàm cosin:

\(b=\sqrt{a^2+c^2-2ac.cosB}=7\)

Diện tích:

\(S_{ABC}=\dfrac{1}{2}ac.sinB=10\sqrt{3}\)