Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi.
Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp
Ta có
ha=2S/a =r(a+b+c)/a
=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)}
=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) =
=1/r^2/(1/a^2+1/b^2+1/c^2)
Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*)
=> T<=1/4
=> Max(T) = 1/4 Khi tam giác đều
c/m bất đẳng thức (*)
S = pr
S= √p(p-a)(p-b)(p-c)
=> pr= √p(p-a)(p-b)(p-c)
=> (pr^2) = (p-a)(p-b)(p-c)
=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c)
=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2
=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2
=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4
=> Dấu bằng xảy ra khi ha = hb = hc => Khi đó ABC là tam giác đều

Sửa đề \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(h_a+h_b+h_c\right)\left(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\right)\) \(\left(1\right)\)
Gọi S là diện tích tam giác \(\Rightarrow\)\(S=\frac{ah_a}{2}=\frac{bh_b}{2}=\frac{ch_c}{2}\)\(\Rightarrow\)\(a=\frac{2S}{h_a};b=\frac{2S}{h_b};c=\frac{2S}{h_c}\)
\(VT=\left(\frac{2S}{h_a}+\frac{2S}{h_b}+\frac{2S}{h_c}\right)\left(\frac{1}{\frac{2S}{h_a}}+\frac{1}{\frac{2S}{h_b}}+\frac{1}{\frac{2S}{h_c}}\right)\) ( thay vào là xong )
\(VT=2S\left(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\right)\left(\frac{h_a+h_b+h_c}{2S}\right)=\left(h_a+h_b+h_c\right)\left(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\right)\) ( đpcm )
Chúc bạn học tốt ~

A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
Không mất tính tổng quát, giả sử ha là độ dài đường cao ứng với BC. Định nghĩa tương tự với hb và hc
Phương án A: Xét ha = 6, hb = hc = 8. Giả sử tồn tại tam giác ABC nhận bộ (6,8,8) làm độ dài 3 đường cao
Ta có 2.SABC = 6BC = 8AB = 8CA. Suy ra \(BC=\frac{4}{3}AB=\frac{4}{3}CA\)
Đặt BC = a. Khi đó \(AB=CA=\frac{3}{4}a\). Ta thấy:
\(AB+CA=\frac{3}{4}a+\frac{3}{4}a=\frac{3}{2}a>a=BC\)
\(BC+CA=BC+AB=a+\frac{3}{4}a=\frac{7}{4}a>\frac{3}{4}a=AB=CA\) (Đúng với ĐBT tam giác)
=> Tồn tại tam giác ABC nhận bộ (6,8,8) làm độ dài 3 đường cao => Chọn (A).
Phương án B: Loại vì một tam giác không thể chứa 5 đường cao.
Phương án C: Lập luận tương tự ta có \(BC=2CA=2AB\)
Tức là \(CA+AB=BC\) (Mâu thuẫn với BĐT tam giác) => Loại (C).
Phương án D: \(3BC=6CA=8AB\Rightarrow BC=2CA=\frac{8}{3}AB\)
Hay \(BC=a,CA=\frac{a}{2},AB=\frac{3}{8}a\). Có \(CA+AB=\frac{a}{2}+\frac{3}{8}a=\frac{7}{8}a< a=BC\)
=> Mâu thuẫn với BĐT tam giác => Loại (D).
Phương án E: \(3BC=6CA=9AB\Rightarrow BC=2CA=3AB\)
Hay \(BC=a,CA=\frac{a}{2},AB=\frac{a}{3}\). Có \(CA+AB=\frac{a}{2}+\frac{a}{3}=\frac{5}{6}a< a=BC\)
=> Mâu thuẫn với BĐT tam giác => Loại (E).
Vậy chỉ có bộ số (A). (6,8,8) thỏa mãn đề.
Gọi a,b,c là 3 cạnh tương ứng với đường cao \(h_a;h_b;h_c\)
Có: \(a< b+c\Rightarrow\frac{2S}{h_a}< \frac{2S}{h_b}+\frac{2S}{h_c}\Rightarrow\frac{1}{h_a}< \frac{1}{h_b}+\frac{1}{h_c}\)
Tương tự với \(h_b;h_c\)
Xét: (B): (10;5;15) \(\frac{1}{5}>\frac{1}{10}+\frac{1}{15}=\frac{1}{6}\)(không là độ dài 3 đường cao)
Xét: (C): \(\frac{1}{2}=\frac{1}{4}+\frac{1}{4}\)(không là độ dài 3 đường cao)
Xét (D): \(\frac{1}{3}>\frac{1}{6}+\frac{1}{8}=\frac{7}{24}\)(không là độ dài 3 đường cao)
Xét: (E): \(\frac{1}{3}>\frac{1}{6}+\frac{1}{9}=\frac{5}{18}\)(không là độ dài 3 đường cao)
Chọn A