Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp số: 7,2 cm.
Đúng 100% luôn!
Ai tk cho mình mình tk lại.
Lời giải:
Vì $9^2+12^2=15^2$ nên theo định lý Pitago đảo thì tam giác ABC là tam giác vuông có độ dài 2 cạnh góc vuông là $9$ cm và $12$ cm.
Diện tích tam giác ABC:
$9.12:2=54$ (cm2)
Có 1 tam giác vuông cạnh lớn nhất là 15cm cạnh nhỏ nhất là 9cm. Vậy độ dài cạnh còn lại là bao nhiêu
Cạnh lớn nhất là cạnh huyền.
Gọi x(cm) là độ dài cạnh còn lại.
Theo đ/lí Pi-ta-go:
152 = x2 + 92
=> 225 = x2 + 81
=> x2 = 225 - 81
=> x2 = 144
=> x2 = 122
=> x = 12
Vậy cạnh còn lại dài 12cm.
Gọi a , b , c lần lượt là độ dài mỗi cạnh tam giác (cánh đáy)
x , y , z lần lượt là chiều cao tương ứng với mỗi cạnh đáy
Theo đề bài ,ta có :
a + b + c = 60
x = 12 ; y = 15 ; z = 20
Theo công thức tính diện tích tam giác ,ta có :
\(S=\frac{a.x}{2}=\frac{b.y}{2}=\frac{c.z}{2}\)
\(\Rightarrow\frac{12a}{2}=\frac{15b}{2}=\frac{20z}{2}\)
Đặt \(\frac{12a}{2}=\frac{15b}{2}=\frac{20c}{2}=k\)
=> \(\hept{\begin{cases}a=\frac{2k}{12}=\frac{k}{6}\\b=\frac{2k}{15}\\c=\frac{2k}{20}=\frac{k}{10}\end{cases}}\)
Thay vào biểu thức a + b + c = 60 , ta có :
\(\frac{k}{6}+\frac{2k}{15}+\frac{k}{10}=60\)
\(\frac{5k}{30}+\frac{4k}{30}+\frac{3k}{30}=60\)
\(\frac{12k}{30}=60\)
12k = 1800
k = 150
=> \(\hept{\begin{cases}x=\frac{150}{6}=25\\y=\frac{2.150}{15}=20\\z=\frac{150}{10}=15\end{cases}}\)