K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 5 2020
Bổ sung đề bài:Trên cạnh AC lấy điểm M sao cho AM=AB
Xét tam giác ADB và tam giác ADM có :
AD là cạnh chung
\(\widehat{BAD=\widehat{DAM}}\)(vì tia phân giác của góc A cắt BC ở D)
AB=AM(gt)
\(\Rightarrow\)Tam giác ABD=Tam giác ADM(c.g.c)
\(\Rightarrow\)DB=DC
Để chứng minh D nằm giữa B và M,ta sẽ chứng minh BD < BM(đã biết D thuộc tia BM).Muốn vậy cần chứng minh \(BD< \frac{1}{2}BC\),tức là BD < DC
Ta chuyển BD và DC thành hai cạnh của một tam giác .Trên cạnh AC lấy điểm E sao cho AE = AB
Xét \(\Delta\)ABD và \(\Delta\)AED có :
AB = AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)
AD cạnh chung
=> \(\Delta\)ABD = \(\Delta\)AED(c.g.c)
=> BD = ED,\(\widehat{B_1}=\widehat{E_1},\widehat{B_2}=\widehat{E_2}\)
Do \(\widehat{B_2}>\widehat{C}\left(\Delta ABC\right)\Rightarrow\widehat{E_2}>\widehat{C}\),do đó DC > ED
Vậy DC > BD.Từ đó suy ra \(BD< \frac{1}{2}BC\)và D nằm giữa B và M.