Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ biết làm mỗi câu d thôi bạn thông cảm nhé !!!
d) Vì BE vuông AC, CF vuông AB(gt)
Mà BE, CF cắt nhau tại H
=> H là trực tâm của tam giác ABC
Ta có Sbhc/Sabc = 1/2 x HD xBC/1/2 x AD x BC = HD/AD (1)
Ta có Sahc/Sabc = 1/2 x HE x AC/1/2 x BE x AC = HE/BE (2)
Ta có Sabh/Sabc = 1/2 x HF x AB/1/2 x CF x AB = HF/CF (3)
Từ (1), (2), (3) => HD/AD + HE/BE + HF/CF = Sbhc/Sabc + Sahc/Sabc + Sabh/Sabc
=> HD/AD + HE/BE + HF/CF = Sabc/Sabc
=> HD/AD + HE/BE + HF/CF = 1 (Đpcm)
câu c nè
Chứng minh tgCEB đồng dạng vs tgCDA (g.g)=>gócEBC= gócDAC
Do đó : tg ADC đồng dạng với tam giác BDH=>AD/BD=DC/DH
=>BD/DH=AD/DC=>BD/DH=3/4(AD PYTAGO vào tg vuông ADC ta tính được DC=4)
vậy\(\frac{BD}{DH}=\frac{3}{4}\)
a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔAEH\(\sim\)ΔBDH(g-g)
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
\(DC=\sqrt{5^2-3^2}=4\left(cm\right)\)
Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
góc DBH=góc DAC
=>ΔDBH đồng dạng với ΔDAC
=>DB/DA=DH/DC
=>DB/DH=DA/DC=3/4