K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

bạn chứng minh tam giác MBC = tam giác MB'A ( cgc) =>BC=AB' (1)

chứng minh tiếp tâm giác NBC= tam giác NAC' ( cgc) => BC= AC' (2)

từ 1và 2 => BC=AB'=AC'

Vì tam giác MBC=tam giác MB'A nên góc MAB= góc MCB=> BC//AB'

vì tâm giác NBC= tam giác NAC' nên góc NAC' = góc NBC => BC// AC'

tam giác NBC' = tam giác NAC( cgc) =>góc NC'B= góc NCA => BC'//AC

2 tháng 11 2016

Gọi M , N , Q trung điểm BC , DE , BE, CD thêm Gọi M , N , P, Q trung điểm BC , DE , BE, CD.

a: Xét ΔANM và ΔACB có 

AN/AC=AM/AB

\(\widehat{NAM}=\widehat{CAB}\)

Do đó: ΔANM\(\sim\)ΔACB

Suy ra: \(\widehat{ANM}=\widehat{ACB}\)

hay MN//BC

Xét tứ giác MNBC có MN//BC

nên MNBC là hình thang

mà MB=NC

nên MNBC là hình thang cân

b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

nên ABCD là tứ giác nội tiếp

Xét đường tròn ngoại tiếp tứ giác ABCD có

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

\(\widehat{BDC}\) là góc nội tiếp chắn cung BC

mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)

nên \(\widehat{ADB}=\widehat{CDB}\)

hay DB là tia phân giác của góc ADC

30 tháng 11 2016

giúp e vs các a cj Phương An

soyeon_Tiểubàng giải

Hoàng Lê Bảo Ngọc

Silver bullet

Nguyễn Huy Tú

Nguyễn Như Nam

Nguyễn Trần Thành Đạt

Nguyễn Huy Thắng

Võ Đông Anh Tuấn