K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB và ΔAFC có 

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

\(\widehat{BAC}\) chung
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF

b: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

c: Xét ΔFBI và ΔECI có 

\(\widehat{FBI}=\widehat{ECI}\)

FB=EC

\(\widehat{BFI}=\widehat{CEI}\)

Do đó: ΔFBI=ΔECI

Suy ra: IB=IC

hay I nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AI\(\perp\)BC

d: Xét ΔBIC có IB=IC

nên ΔBIC cân tại I

a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

CB chung

\(\widehat{FBC}=\widehat{ECB}\)(ΔABC cân tại A)

Do đó: ΔFBC=ΔECB

b:

Ta có;ΔFBC=ΔECB

=>EB=FC

Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

AB=AC

BE=CF

Do đó: ΔABE=ΔACF

c: Ta có: ΔABE=ΔACF

=>AE=AF

Xét ΔABC có \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

nên EF//CB

d: Sửa đề: K là trung điểm của BC, H là giao điểm của BE và CF

Ta có: ΔFBC=ΔECB

=>\(\widehat{FCB}=\widehat{EBC}\)

=>\(\widehat{HBC}=\widehat{HCB}\)

=>ΔHBC cân tại H

=>HB=HC

=>H nằm trên đường trung trực của BC(1)

ta có: KB=KC

=>K nằm trên đường trung trực của BC(2)

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,H,K thẳng hàng

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Ta có: ΔABE=ΔACF

nên BE=CF

Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

CF=BE

Do đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)

ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

ôi zời ghi từng bài thôi!!!!!!1

Cậu vẽ cái hình ra đi mk ko làm đc rồi Khó quá

28 tháng 4 2017

B A C E F O

a/ Giải thích thêm: Vì AB = AC (tam giác ABC cân tại A. Mà E là trung điểm AC;F là trung điểm AB => AF = BF = AE = EC)

Xét tam giác BAE và tam giác CAF có:

    \(\hept{\begin{cases}\widehat{BAC}:chung\\AB=AC\left(gt\right)\\AE=AF\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta BAE=\Delta CAF\left(c.g.c\right)\)

\(\Rightarrow BE=CF\)

b/ Xét tam giác ABC có 2 đường trung tuyến BE;CF cắt nhau tại O

=> O là trọng tâm tam giác ABC

=> AO là đường trung tuyến thứ 3

=> AO đi qua trung điểm H của BC (Bạn bổ sung điểm H cho mình nhá - Cho dễ làm thôi)

Mà tam giác ABC cân tại A => AO vừa là đường trung tuyến vừa là đường cao

\(\Rightarrow AO⊥BC\)tại H

c/ Vì H là trung điểm BC => HB = HC = BC:2 = 10 : 2 = 5 (cm)

 Xét tam giác ABH vuông tại H có:

\(AH^2+BH^2=AB^2\left(pytago\right)\)

\(AH^2+5^2=13^2\)

\(\Rightarrow AH^2=13^2-5^2=169-25=144\)

\(\Rightarrow AH=\sqrt{144}=12\left(cm\right)\)

Vì O là trọng tâm của tam giác ABC => \(OH=\frac{1}{3}AH\Rightarrow OH=\frac{1}{3}.12=4\left(cm\right)\)

Xét tam giác BOH vuông tại H có:

\(BH^2+OH^2=BO^2\left(pytago\right)\)

\(5^2+4^2=BO^2\)

\(25+16=BO^2\)

\(41=BO^2\)

\(\Rightarrow BO=\sqrt{41}\approx6,4\left(cm\right)\)

b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có 

BC chung

\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)

hay \(\widehat{IBC}=\widehat{ICB}\)

Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)

nên ΔIBC cân tại I(Định lí đảo của tam giác cân)

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)