K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

 a) từ N kẻ đừng thẳng song song với AB đường thẳng này cắt đường thẳng BC tại H.=> góc NHC = góc MBC (so le trong) (1) 
và góc INC = góc IMB (so le trong) (2) 
lại có góc NCH = góc ACB và góc ACB = góc ABC hay góc ACB = góc MBC => góc NHC = góc NCH nên tam giác NCH cân tại N => NH = NC. mà NC = MB do đó NH = MB (3) 
Từ !,2,3 : tam giác INH = tam giác IMB (g,c,g) => IM = IN 
b) Từ N kể đường thẳng song song với BC cắt đường thẳng AB tại K => KBCN là hình thang (*) 
Lại có góc BKN = ABC ( đồng vị), CNK = ACB (đồng vị) và ABC = ACB nên BKN = CNK (**) 
từ (*) và (**) => KBCN là hình thang cân => BK = CN = BM. 
=> AK = AN nên tam giác AKN cân tại A => AO là đường trung trực của KN => OK = ON (4) 
vì OI là trung trực của MN nên OM = ON (5) 
từ (4) và (5) => OM = OK => tam giác OMK cân tại O lại có BM = BK (cmt) nên OB v^g góc với AB. 
Tam giác ABO và Tam giác ACO có: AB = ÃC, BAO = CAO (gt) , AO chung nên tam giác ABO = tam giác ACO (c,g,c) => ACO = ABO = 90độ. hay OC v^g góc với AC. 

P/s: Tham khảo nha

12 tháng 9 2017

Mình chỉ giải được câu a mong các bạn làm tiếp câu b nha

a,  Tam giác BAM và CNA:

AB=AC(tam giác ABC cân tại A )

A=A(g.c)

B1=B phần 2=C phần 2=C2(B=C)

Vậy tam giác BMA=CNA(g.c.g)

suy ra BM=CN

1 tháng 11 2021

A B C M N I E

a)

*AMN cân

Vì t/g ABC cân tại A (gt)

=>^B=^C

Do đó: ^ABM=^ACN

Xét t/ABM và t/gACN có

góc ^A chung

AB=AC ( vì t/g ABC cân)

^ABM=^ACN (cmt)

Nên t/gABM=t/gACN (g.c.g)

=>AM=AN (2 cạnh tương ứng = nhau)

=> tam giác ANM cân

*MN//BC

Từ tam giác ANM cân nên => ^A+^ANM+^AMN=180o

      tam giác ABC cân nên=>^A+^B+^C=180o

Mà ^B=^C 

      ^ANM=^AM 

Nên: ^C=^ANM

=>^MCN=^ANM

Mà 2 góc này lại ở vị trí so le trong

Do đó MN//BC (đpcm)

b) 

Vì t/g ABC cân tại A

^ABC=^ACB

Mà BM là tia p/g của ^ABC

      CN là tia p/g của ^ACB

do đó: ^MBC=^NCB

=> tam giác EBC cân tại E

Xét t/g AEB và t/g AEC có:

AB=AC (vì t/g ABC cân)

^ABM=^ACN (cmt)

=BE=CE (EBC cân)

=> t/gAEB=t/gAEC(c.g.c)

=>^BAE=^CAE (2 góc tương ứng = nhau)

Do đó AE là tia phân giác của t/gBAC (1)

Xét t/g AIB và t/gAIC có

AB=AC ( vì t/g ABC cân)

IB=IC (I là trung điểm BC)

=>tam giác AIB=t/gAIC (c.g.c)

=>^IAB=^IAC (2 góc tương ứng = nhau)

Do đó:AI là tia phân giác của ^BAC (2)

Từ (1) và (2) => A,I,E thằng hàng ( 2 tia phân giác của 1 góc thì thẳng hàng).

10 tháng 4 2016

Bạn có kết quả bài này chưa giải giúp mk với

1 tháng 4 2018

bài lớp mấy

A B C M N E I

a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)

\(\Rightarrow\) \(AB=AC\)  hay \(\frac{1}{2}AB=\frac{1}{2}AC\)  và   \(BM\)\(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)

\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)

Xét \(\Delta AMN\)\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)

b)Có 

  • \(M\)là trung điểm của \(AC\)(do \(BM\)là đường trung tuyến )
  • \(N\)là trung điểm của \(AB\)(....)

\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN//BC\left(dpcm\right)\)