Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì C là trọng tâm của tam giác ADE suy ra
AMlà đường trung tuyến của tam giác ADE
suy ra :EM=DM hay M là trung điểm của DE (1)
lẠI có : H là trung điểm AD (2)
từ (1) và (2) suy ra AE//HM
a) Xét tam giác ADE có:
HA=HD (gt) =>EH là trung tuyến của tam giác AD
Vì C thuộc BC => C thuộc EH (1)
Lại có: EC=BC (gt) Mà CH =1/2 BC (AH là đường của tam giác ABC cân tạ A)
=>CH = 1/2 CE => CE = 2/3 EH (2)
Từ (1) và (2) => C là trọng tâm của tam giác ADE
b) Vì C là trọng tâm của tam giác ADE => AM là đường trung tuyến của tam giác ADE
=> EM=DM hay M là trung điểm của DE (1)
Lại có: H là trung điểm của AD (2)
Từ (1) và (2) => AE//HM
1.
a) Xét ΔADE có :
HE là đường trung tuyến của AD HA=HD )(1)
Ta thấy HC=12BC ( AH là đường trung tuyến của BC )
Mà BC = CE (gt )
⇒HC=12CE (2)
Từ (1) và (2) ⇒C là trọng tâm của ΔADE
b) Hơi khó đấy :)
Xét ΔAHB và ΔAHC có :
HAHA chung
HB=HC ( AH là đường trung tuyến của BC )
AB=AC( ΔABC cân tại A )
Do đó : ΔAHB=ΔAHC(c−c−c)
⇒AHBˆ=AHCˆ( hai góc tương ứng )
Mà AHBˆ+AHCˆ=1800
⇒AHB^=AHC^=1800/2=90o
Xét ΔAHEvà ΔHED có :
HEHE chung
HA=HD( HE là đường trung tuyến của AD )
AHEˆ=DHEˆ(=900)
Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )
⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)
Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )
Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE
⇒HM=DM (1)
Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM
Trở lại vào bài :
Mặt khác DM=ME(cmt)(2)
Từ (1) và (2) ⇒HM=ME
⇒ΔHME⇒ΔHME cân tại M
⇒MHEˆ=MEHˆ
Dễ thấy MEHˆ=HEAˆ(cmt)
⇒MHEˆ=HEAˆ
mà hai góc này ở vị trí so le trong
⇒HM⇒HM//AE(đpcm)
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của CB
=>CB=2CH
mà CB=CE
nên CE=2CH
=>\(\dfrac{EC}{EH}=\dfrac{2}{3}\)
Xét ΔEAD có
EH là đường trung tuyến
\(EC=\dfrac{2}{3}EH\)
Do đó: C là trọng tâm của ΔEAD
b: Xét ΔEAD có
C là trọng tâm
AC cắt DE tại M
Do đó: M là trung điểm của DE
Xét ΔEAD có
H,M lần lượt là trung điểm của DA,DE
=>HM là đường trung bình của ΔEAD
=>HM//AE
c: Để HM\(\perp\)AB thì AE\(\perp\)AB
=>ΔABE vuông tại A
Ta có: ΔABE vuông tại A
mà AC là đường trung tuyến
nên AC=CB=CE
=>AC=CB
mà AB=AC
nên AC=AB=BC
=>ΔABC đều
=>\(\widehat{ABC}=60^0\)
Khi ΔABC đều thì \(\widehat{HAC}=\dfrac{60^0}{2}=30^0\)
Ta có: \(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
=>\(\widehat{ACE}+60^0=180^0\)
=>\(\widehat{ACE}=120^0\)
Ta có: CA=CE
=>ΔCAE cân tại C
=>\(\widehat{CAE}=\widehat{CEA}=\dfrac{180^0-\widehat{ACE}}{2}=30^0\)
\(\widehat{HAE}=\widehat{HAC}+\widehat{CAE}=30^0+30^0=60^0\)
Xét ΔEAD có
EH là đường cao
EH là đường trung tuyến
Do đó: ΔEAD cân tại E
mà \(\widehat{EAD}=60^0\)
nên ΔEAD đều
Ta có: ΔABC đều
mà AH là đường cao
nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)
H là trung điểm của AD
=>\(AD=2\cdot AH=3\sqrt{3}\left(cm\right)\)
ΔADE đều
mà AM là đường trung tuyến
nên AM\(\perp\)DE
=>ΔAMD vuông tại M
Xét ΔAMD vuông tại M có \(cosDAM=\dfrac{AM}{AD}\)
=>\(\dfrac{AM}{3\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)
=>\(AM=4,5\left(cm\right)\)