\(B=40^0\) và tam giác ABC và tam giác MNP. Khi đó M = ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

Xét tg ABC cân tại A

Mà : B=40 => C=40

Nên : A+B+C=180

        A+40+40=180

        A + 80   =180

        A           = 100

Ta có :tg ABC = tg MNP

Mà : 2 tg đó bằng nhau 

Suy ra : A=M

Mà :A=100 => M=100

Vậy : M=100

20 tháng 5 2016

M=40 độ vì là tam giác cân mà B = 40 độ

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD

Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó;ΔEBC=ΔDCB

Suy ra: \(\widehat{MCB}=\widehat{MBC}\)

hay ΔMBC cân tại M

=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)

=>\(\widehat{ACB}=\widehat{ABC}=70^0\)

hay \(\widehat{BAC}=40^0\)

\(\widehat{ABH}=180^0-112^0=68^0\)

Xét ΔAHB vuông tại H có

\(\widehat{ABH}+\widehat{BAH}=90^0\)

nên \(\widehat{BAH}=22^0\)

Vì ΔABC cân tại B

nên \(\widehat{BAC}=\dfrac{180^0-112^0}{2}=34^0\)

mà AD là phân giác

nên \(\widehat{BAD}=17^0\)

=>\(\widehat{HAD}=39^0\)

hay \(\widehat{HDA}=51^0\)

19 tháng 8 2017

A B C M

Th1: AB<AC (hình hơi lệch chuẩn chút :P)

giá sử đường thẳng qua đỉnh A chia tam giác ABC thành hai tam giác cân ABM cân tại A và ACM cân tại M

khi đó (ko viết mũ góc tự hiểu ha)

=> B=M

Lại có M=C+MAC=2C

=>B=2C, lại có A=75

=>B=70

C=35

T.tự Th AC<AB

còn AB=AC=>B=C=52,5

11 tháng 2 2018

Th1: AB<AC (hình hơi lệch chuẩn chút :P)
giá sử đường thẳng qua đỉnh A chia tam giác ABC thành hai tam giác cân ABM cân tại A và ACM cân tại M
khi đó (ko viết mũ góc tự hiểu ha)
=> B=M
Lại có M=C+MAC=2C
=>B=2C, lại có A=75
=>B=70
C=35
T.tự Th AC<AB
còn AB=AC=>B=C=52,5