K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

A B C M N H

a)MH là đường trung trực đoạn AC cũng là đường trung trực tam giác MAC hạ từ đỉnh M
Suy ra tam giác MAC cân tại M 
Suy ra góc MAC = 1800 - 2* góc ACB = góc BAC (đpcm)

b)Tam giác MAC cân tại M  suy ra góc MAC = góc MCA= góc ABC
lại có góc MAC + góc CAN= góc ABC+ góc ABM (cùng bằng 1800)
suy ra góc ABM= góc CAN

Xét tam giác AMB và tam giác CNA có 
AC=AB (tam giác ABC cân tại A)
MB=AN (gt)
góc ABM= góc CAN(cmt)
Suy ra \(\Delta AMB~\Delta CNA\)(c.g.c)
suy ra góc CMA= góc CNA
suy ra tam giác MCN cân tại C
suy ra MC=CN (đpcm)
c) Có \(CM\perp CN\) và tam giác MCN cân tại C
Suy ra tam giác MCN vuông cân tại C
suy ra góc CNM= góc CMN = 450
mà góc NMA= góc CAB (cmt)
suy ra góc BAC = 450
Vậy để \(CM\perp CN\)    thì tam giác ABC cân có góc A = 450

27 tháng 6 2017

a/ Gọi D là giao điểm của đường trung trực cạnh AC với AC

Xét hai tg vuông ADM và tg vuông CDM có

AD = CD (MD là trung trực)

MD chung

^ADM = ^CDM = 90

=> tg ADM = tg CDM (c.g.c)

=> AM = CM => tg AMC cân tại M => ^ACB = ^MAC => ^AMC = 180 - ^ACB - ^MAC = 180 - 2.^ACB (1)

Xét tg ABC có ^BAC = 180 - ^ACB - ^ABC = 180 -2.^ACB (2)

Từ (1) và (2) => ^AMC = ^BAC

b/ Ta có 

^ABM = 180 - ^ABC (1)

^CAN = 180 - MAC (2)

^MAC = ^ACB = ^ABC (3)

Từ (1) (2) (3) => ABM = ^CAN

Xét hai tg ABM và tg CAN có

AB = AC

BM = AN

^ABM = ^CAN

=> tg ABM = tg CAN => AM = CN mà AM = CM => CM = CN

c/ Để CM vuông góc với CN => tg NCN là tg vuông => ^AMC + ^ANC =90

mà ^AMC = ^BAC (c/m câu a); ^AMC = ^ANC (tg AMB = tg ANC đã c/m) => ^BAC = ^AMC = ^ANC

=> ^AMC + ^ANC = ^BAC + ^ANC = 2.^BAC = 90 => ^BAC = 45

=> để CM vuông góc với CN thì ^BAC của tg cân ABC = 45

=> 

16 tháng 8 2019

ko có hình à

9 tháng 7 2019

Câu hỏi của nguyen phuong mai - Toán lớp 7 - Học toán với OnlineMath'

Bạn tham khảo link trên nhé!