K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

A B C M K I N

Qua M kẻ đường thằng MN song song với IK cắt AC tại N

Dễ thấy MN là đường trung bình của tam giác BKC nên KN = NC (1)

Mặt khác, ta cũng chứng minh được IK là đường trung bình của tam giác AMN

=> AK = KN (2)

Từ (1) và (2) suy ra AK = KN = NC

Mà AC = AK + KN + NC = 3AK = 9 cm => AK = 3 cm

27 tháng 9 2016

3cm

18 tháng 1 2018

ko biet

29 tháng 3 2020

2020 nè

29 tháng 9 2016

điểm H nằm ở đâu trong đề không thấy

12 tháng 10 2016

  avt812292_60by60.jpg  Lê Thị Bảo Trâm bị sai đề 

1 tháng 7 2019

Câu hỏi của Bèo Bánh - Toán lớp 8 - Học toán với OnlineMath

Bạn tham khảo bài làm tại link này !

22 tháng 7 2016

qua C kẻ đường thẳng song song với BI cắt AM tại N.   xét tam giác MNC có BI song song với NC nên MI/MN=BM/MC . Do đó MN=MI=AI nên AI/AN=1/3. Mà AI/AN=AK/AC ( IK song song với NC) suy ra AK/AC=1/3 => AK/KC=1/2         

22 tháng 7 2016

kẻ ME song song BK 

ta có : MB = MC 

suy ra ME là đường trung bình tam giác BKC 

suy ra ME song song BK  , EC = EK (1)

lại có ME SONG SONG IK , AI = IM

suy ra IK là đường trung bình tam giác AME 

suy ra AK =KE (2) 

từ (1) và (2) suy ra EC=EK=AK

suy ra AK = 1\2 KC

a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC

b: Xet ΔABC có HK//BC

nên AH/AB=HK/BC

=>HK/18=6/9=2/3

=>HK=12(cm)

c: Xét ΔABM có HI//BM

nên HI/BM=AI/AM

Xét ΔAMC có IK//MC

nên IK/MC=AI/AM

=>HI/BM=IK/MC

mà BM=CM

nên HI=IK

=>I là trung điểm của HK

26 tháng 2 2023

vẽ hình nữa

 

Bài làm

b) Xét tam giác HAP có:

Q là trung điểm BH

P là trung điểm AH

=> QP là đường trung bình

=> QP // AB 

=> \(\widehat{HQP}=\widehat{QPA}\)

Xét tam giác HQP và tam giác ABC có:

\(\widehat{HQP}=\widehat{QPA}\)

\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)

=> Tam giác HQP ~ Tam giác ABC ( g - g )

=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\)             (1)

Xét tam giác HAB có: 

QP // AB

=> Tam giác HQP ~ HAB 

=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\)             (2)

Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)

Xét tam giác AHC vuông ở H có: 

\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)

Xét tam giác ABC vuông ở A có:

\(\widehat{CBA}+\widehat{BCA}=90^0\)  (4)

Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)

Xét tam giác ABQ và tam giác CAP có:

\(\frac{AB}{AC}=\frac{QB}{PA}\)

\(\widehat{PAC}=\widehat{CBA}\)

=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )

Bài làm

a) Vì AM là trung tuyến

=> M là trung điểm BC 

=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )

Ta có: BH + HM + MC = BC

=> BH + HM + MC = BH + HC

hay 9 + HM + 12,5 = 9 + 16

=> HM = 9 + 16 - 9 - 12,5 

=> HM = 3,5 ( cm )

Vì tam giác ABC là tam giác vuông ở A

Mà AM trung tuyến

=> AM = MC = BM = 12,5 ( cm )

Xét tam giác AHM vuông ở H có:

Theo định lí Pytago có:

AH2 = AM2 - HM2 

hay AH2 = 12,52 - 3,52 

=> AH2 = 156,25 - 12,25

=> AH2 = 144

=> AH = 12 ( cm )

SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )

Xét tam giác AHB vuông ở H có:

Theo định lí Py-ta-go có:

AB2 = BH2 + AH2 

=> AB2 = 92 + 212 

=> AB2 = 81 + 441

=> AB2 = 522

=> AB \(\approx\)22,8 ( cm )

Xét tam giác AHC vuông ở H có: 

Theo định lí Pytago có:

AC2 = AH2 + HC2 

=> AC2 = AH2 + ( HM + MC )2 

hay AC2 = 212 + ( 3,5 + 12,5 )2 

=> AC2 = 441 + 256

=> AC2 = 697

=> AC \(\approx\)26,4 ( cm )

Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )

SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )