Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC
Xét tứ giác BCDE có ED//BC
nên BCDE là hình thang
mà BD=CE
nên BCDE là hình thang cân
Vì \(\left\{{}\begin{matrix}\text{E là trung điểm AB}\\\text{D là trung điểm AC}\end{matrix}\right.\)
mà AB=AC ( tam giác ABC cân tại A)
⇒ AE=BE=AD=DC
Vì \(\left\{{}\begin{matrix}\text{D là trung điểm AC}\\\text{F là trung điểm BC}\end{matrix}\right.\)
⇒ DF là đường trung bình tam giác ABC đáy AB
⇒ DF//AB mà DF=AE
⇒ AEFD là hình bình hành (1)
Vì BEDF là hình bình hành
⇒ BE=DF mà BE=AD
⇒ AD=DF (2)
Từ (1) và (2)
⇒ ADFE là hình thoi
Vì BEDF là hình bình hành (gt)
=> BE // DF , BE = DF
mà BE = AE (E là trung điểm AB)
=> AE = DF
Xét tứ giác ADFE có : AE = FD (cmt)
AE // FD (BE // FD mà E ∈ AB)
=> Tứ giác ADFE là hình bình hành
Vì tam giác ABC cân tại A có F là trung điểm BC
=> AF là đường cao của tam giác ABC
=> AF ⊥ BC (1)
Vì tứ giác BCDE là hình thang (gt)
=> BC // DE (2)
Từ (1) và (2) => AF ⊥ ED (từ vuông góc đến song song)
Xét hình bình hành ADFE có : AF ⊥ ED mà AF và ED là 2 đường chéo
=> hình bình hành ADFE là hình thoi (DHNB)
K A B H D E F C
a, Xét tứ giác AKBH có:
AD = BD (gt), HD = KD (gt)
=>D là trung điểm của AB, HK
=> AB cắt HK tại D
=> tứ giác AKBH là hình bình hành
Mà góc AHB = 90 độ (AH _|_ BC)
=> AKBH là hình chữ nhật
b, Xét t/g ABC có: AD = BD (gt), AE = EC (gt)
=> DE là đường trung bình của t/g ABC
=> DE // BC hay DE // CF, DE = 1/2BC
Mà FC = FB = 1/2 BC
=> DE = FC
Xét tứ giác DECF có: DE // CF (cmt) ,DE = CF (cmt)
=>DECF là hình bình hành
c, Xét t/g ADE và t/g EFC có:
AE = EC (gt)
DE = FC (cmt)
góc AED = góc ECF (DE // BC, đồng vị)
=> t/g ADE = t/g EFC (c.g.c)
=>AD = EF (1)
Xét t/g ABH có: HD là đường trung tuyến
=> HD = 1/2AB = AD = DB (t/c đường trung tuyến trong tam giác vuông) (2)
Từ (1) và (2) => EF = DB
Mà DE // CF hay DE // HF
=> DEFH là hình thang cân
d, Ta có: góc HDE = góc DEF (DEFH là hình thang cân) (3)
CM EF là đường trung bình => EF // AD
=> góc DEF = góc ADE (so le trong) (4)
Từ (3),(4) => góc HDE = góc ADE
Mà góc ADK = góc HDB (đối đỉnh)
=> góc HDE + góc HDE = góc ADK + góc ADE
=> góc BDE = góc KDE
Lại có: BD = HD (cm câu c)
Mà HD = DK (gt)
=> BD = DK
Xét t/g EKD và t/g EBD có:
DK = BD (cmt)
góc KDE = góc BDE (cmt)
DE là cạnh chung
=> t/g/ EKD = t/g EBD (c.g.c)
=>EK = EB
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)