Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^2 = 4x^2 - 9`
`<=> 9 = 4x^2 - x^2`
`<=> 9 = 3x^2`
`<=> x^2 = 3.`
`<=> x = +-sqrt 3`.
1/
Bạn chỉ cần tìm sin, cos trong \(\left[0;2\pi\right]\) là đủ (vì cả 2 hàm đều tuần hoàn với chu kì \(2\pi\))
Đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\) với \(a\in\left[0;2\pi\right]\)
\(\Rightarrow4sina.cosa\left(2cos^2a-1\right)=1\)
\(\Leftrightarrow2sin2a.cos2a=1\Leftrightarrow sin4a=1\)
\(\Rightarrow4a=\frac{\pi}{2}+k2\pi\Rightarrow a=\frac{\pi}{8}+\frac{k\pi}{2}\)
\(\Rightarrow0\le\frac{\pi}{8}+\frac{k\pi}{2}\le2\pi\Rightarrow a=\left\{\frac{\pi}{8};\frac{5\pi}{8};\frac{9\pi}{8};\frac{13\pi}{8};\frac{17\pi}{8}\right\}\)
\(\Rightarrow\left(x;y\right)=\left(sin\frac{\pi}{8};cos\frac{\pi}{8}\right);\left(sin\frac{5\pi}{8};cos\frac{5\pi}{8}\right)...\)
2.
\(sinx=\frac{1}{3}\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+l2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)\\x=\pi-arcsin\left(\frac{1}{3}\right)\end{matrix}\right.\)
(Vì \(0< \frac{1}{3}< 1\) nên \(0< arcsin\left(\frac{1}{3}\right)< \frac{\pi}{2}\) do đó nếu \(k>0\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi>2\pi\) ; nếu \(k\le-1\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi\le-\frac{3\pi}{2}\) đều ko thuộc \(\left[0;\pi\right]\Rightarrow k=0\).
Tương tự với \(l\))
Cho mình hỏi sao từ 0 < 1/3 < 1 thì suy ra đc 0 < arcsin (1/3) < pi/2 vậy?
Như vậy sẽ có rất nhiều trường hợp thiếu nghiệm, đó là khi \(a=d\) (mất 1/2 số điểm đó em)
Ví dụ: giải phương trình
\(2sin^2x+3sinx.cosx+cos^2x=2\)
Trường hợp này ko xét \(cosx=0\) là mất nửa số điểm rồi (mất hẳn 1 họ nghiệm)
1/ \(u_{16}=u_1+\left(16-1\right).d=93\)
2/ \(u_{31}=u_1+\left(31-1\right)d=-\frac{35}{2}\)
\(S_n=u_1+u_2+...+u_n\)
\(S_n=u_1+u_1q+u_1q^2+...+u_1q^{n-1}\)
\(=u_1\left(1+q+q^2+...+q^{n-1}\right)\)
Have: \(q^n-1=\left(q-1\right)\left(q^{n-1}+q^{n-2}+...+1\right)\)
\(\Rightarrow1+q+q^2+...+q^{n-1}=\dfrac{q^n-1}{q-1}\)
\(\Rightarrow S_n=u_1\dfrac{q^n-1}{q-1}\)
hhy-chy
Giải hệ bình thường là ra được mà bạn?