Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đúng
b)Đúng
c)Sai vì nghiệm không thỏa mãn ĐKXĐ
d)Sai vì có 1 nghiệm không thỏa mãn ĐKXĐ
![](https://rs.olm.vn/images/avt/0.png?1311)
Sử dụng delta thôi!
Xét \(4x^2+\sqrt{2}x-\sqrt{2}=0\) có \(4\cdot\left(-\sqrt{2}\right)=-4\sqrt{2}< 0\) nên PT có 2 nghiệm phân biệt
Mà a là nghiệm nguyên dương của PT nên ta có: \(4a^2+\sqrt{2}a-\sqrt{2}=0\)
Vì a > 0 \(\Rightarrow4a^2=-\sqrt{2}a+\sqrt{2}\)
\(\Rightarrow a^2=\frac{\sqrt{2}-\sqrt{2}a}{4}=\frac{\left(1-a\right)\sqrt{2}}{4}=\frac{1-a}{2\sqrt{2}}\)
\(\Rightarrow a^4=\left(\frac{1-a}{2\sqrt{2}}\right)^2=\frac{1-2a+a^2}{8}\)
Thay vào ta được:
\(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{\left(\sqrt{a^4+a+1}\right)^2-a^4}\)
\(=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a^4+a+1-a^4}=\frac{\left(a+1\right)\left(\sqrt{a^4+a+1}+a^2\right)}{a+1}=\sqrt{a^4+a+1}+a^2\)
\(=\sqrt{\frac{1-2a+a^2}{8}+a+1}+\frac{1-a}{2\sqrt{2}}=\sqrt{\frac{a^2+6a+9}{8}}+\frac{1-a}{2\sqrt{2}}\)
\(=\frac{a+3}{2\sqrt{2}}+\frac{1-a}{2\sqrt{2}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Vậy \(B=\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\sqrt{1-x}\) xác định với \(x\le1,\sqrt{x-2}\) xác định với \(x\ge2\)
Không có giá trị nào của x nghiệm đúng phương trình.
Do đó phương trình vô nghiệm.
b) ĐKXĐ \(x\le3\)
\(\sqrt{3-x}+x=\sqrt{3-x}+1\)<=> x = 1.
Tậm nghiệm S = {1}
Khi x=0 ta được : \(\sqrt{0}+1\ne2\sqrt{-0}\)
Khi x < 0 thì \(\sqrt{x}\) không xác định .
Khi x > 0 thì \(\sqrt{-x}\) không xác định .
* Vậy trong mọi trường hợp , không có giá trị nào của ẩn nghiệm đúng với phương trình \(\sqrt{x}+1=2\sqrt{-x}\)
\(\sqrt{-x}\) là không thể có trong toán học.