Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây nhé:
Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath
a, thay m = 3 vào pt ta đc
x2 - ( 2 . 3 +1)x + 2.3 = 0
x2 - 7x + 6 =0
ta có a + b+c= 1 -7 + 6=0
\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1
x2 = 6
b, x2 - (2m +1 )x + 2m=0
\(\Delta\)= [ - (2m + 1 )]2 - 4.2m
= 4m2 + 4m + 1 - 8m
= 4m2 - 4m + 1
= (2m-1)2 \(\ge\)0 \(\forall\)m
để pt có 2 nghiệm pb thì 2m - 1 \(\ne\)0
m \(\ne\)1/2
theo hệ thức vi ét ta có
x1 + x2 = 2m + 1
x1 x2 = 2m
ta có | x1| - |x2| = 2
( |x1| - |x2| )2 = 4
x12 - 2 |x1x2| + x22 =4
x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4
( x1 + x2)2 - 2 |x1x2| = 4
(2m + 1 )2 - 2|2m|=4 (1 )
+, nếu 2m \(\ge\)0 \(\Rightarrow\)m \(\ge\)0 thì
(1)\(\Leftrightarrow\)(2m + 1)2 - 4m = 4
4m2 + 4m + 1 - 4m = 4
4m2 = 3
m2 = 3/4
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)
+, 2m < 0 suy ra m < 0 thì
(1) : (2m + 1 )2 + 4m =4
4m2 + 4m + 1 + 4m = 4
4m2 + 8m - 3 =0
\(\Delta\)= 64 + 4.4.3 = 112 > 0
pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)= \(\frac{-2+\sqrt{7}}{2}\)(ko tm)
x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)
vậy m \(\in\){\(\frac{\sqrt{3}}{2}\); \(\frac{-2-\sqrt{7}}{2}\)} thì ...........
ko bt có đúng ko nữa
#mã mã#
â ) hàm số y = ( 2m - 1 )x + m + 2 đồng biến <=> a > 0
<=> 2m - 1 > 0
<=> 2m > 1
<=> m > \(\frac{1}{2}\)
Vay : khi m > \(\frac{1}{2}\) thì hàm số trên đồng biến
bài này bn cx làm như bình thường thôi ạ
tìm đen ta
sau đó cm đenta > 0
theo hệ thức viet toimf x1+x2=.., x1*x2=....
thay vào r THÔI
a/ \(2m-3>0\Rightarrow m>\frac{3}{2}\)
b/ \(\left\{{}\begin{matrix}4-3m\ne0\\2m+5\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\frac{4}{3}\\m\ne-\frac{5}{2}\end{matrix}\right.\)
c/ \(7m-3\ne0\Rightarrow m\ne\frac{3}{7}\)
d/ \(m\ne0\)
Phương pháp: Đưa về hằng đẳng thức!
----------------
\(A=2m^2+2m+4=2\left(m^2+m+2\right)=2\left(m^2+2.m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{7}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)
Dấu = xảy ra khi m = -1/2
Vậy: MIN A = 7/2 tại x = -1/2