\(\sqrt{\dfrac{-10}{5-4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: ĐKXĐ: 2/3x-1/5>=0

=>2/3x>=1/5

hay x>=3/10

b: ĐKXĐ: \(\dfrac{x+1}{2x-3}>=0\)

=>2x-3>0 hoặc x+1<=0

=>x>3/2 hoặc x<=-1

c: ĐKXĐ: \(\left\{{}\begin{matrix}3x-5>=0\\x-4>0\end{matrix}\right.\Leftrightarrow x>4\)

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

6 tháng 8 2020

\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\left(x\ge\frac{1}{2}\right)\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)

\(\Leftrightarrow2x-1=x+5\)

\(\Leftrightarrow2x-1-x-5=0\)

\(\Leftrightarrow x-6=0\Leftrightarrow x=6\left(tm\right)\)

vậy x=6 là nghiệm của phương trình

b) \(\sqrt{x+3}+2\sqrt{4x+12}-\frac{1}{3}\sqrt{9x+27}=8\left(x\ge-3\right)\)

\(\Leftrightarrow\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)

\(\Leftrightarrow\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)

\(\Leftrightarrow4\sqrt{x+3}=8\)

\(\Leftrightarrow x+3=4\)

<=> x=-1 (tmđk)

vậy x=-1 là nghiệm của phương trình

24 tháng 7 2017

a) ĐKXĐ: \(2-x^2\ge0\Leftrightarrow\left|x\right|< \sqrt{2}\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)

b) ĐKXĐ: \(5x^2-3>0\Leftrightarrow\left|x\right|>\sqrt{\dfrac{3}{5}}\Leftrightarrow x>\sqrt{\dfrac{3}{5}}\) hoặc \(x< -\sqrt{\dfrac{3}{5}}\)

c) ĐKXĐ: \(-\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

d) ĐKXĐ: \(\left(x-1\right)\left(x+2\right)>0\Leftrightarrow x>1\) hoặc \(x< -2\)

1 tháng 8 2018

3) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{4x-20}=4\)

\(\Leftrightarrow4x-20=16\)

\(\Leftrightarrow4x=36\)

\(\Leftrightarrow x=9\)

vậy ...

2 tháng 8 2018

1)

\(A=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}\right)^2-2^2}\\ A=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)

\(B=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{x^2-2x\sqrt{2}+\left(\sqrt{2}\right)^2}{x^2-\sqrt{2}}\\ B=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{\left(x-\sqrt{2}\right)}{\left(x+\sqrt{2}\right)}\)

\(C=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+\left(\sqrt{5}\right)^2}\\ C=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)

\(D=\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}=\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)}{2\sqrt{a}-1}=\sqrt{a}\)

\(E=\dfrac{x^2-2}{x-\sqrt{2}}=\dfrac{x^2-\left(\sqrt{2}\right)^2}{x-\sqrt{2}}\\ E=\dfrac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=x+\sqrt{2}\)

\(F=\dfrac{\sqrt{x}-3}{x-9}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}\right)^2-3^2}\\ F=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ F=\dfrac{1}{\sqrt{x}+3}\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Căn bậc hai. Căn bậc ba

NV
1 tháng 3 2019

a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)

14 tháng 6 2017

đk biểu thức trong căn là không âm (với phân số thì kết hợp thêm mẫu khác 0), vậy thôi chứ không khó đâu

8 tháng 7 2019

Để là phân tích thành nhân tử chứ nhỉ?? Chẳng lẽ là "Phân tích ra thừa số nguyên tố" haha

ĐK: \(x\ge0\)

Đặt \(\sqrt{x}=t\) cho dễ nhìn

a) \(t^2-5t+6=t^2-3t-2t+6\)

\(=t\left(t-3\right)-2\left(t-3\right)=\left(t-3\right)\left(t-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

b) \(t^2-t-2=t^2+t-2t-2=t\left(t+1\right)-2\left(t+1\right)\)

\(=\left(t+1\right)\left(t-2\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

8 tháng 7 2019

Cảm ơn bạn nhiều nhaaaaa <3 mình xem mấy cái đáp án khác làm tắt không hiểu j ^^ cảm ơn bạn đã làm từng bước để mình hiểu <3 cảm ơn bạn nhiều nhaaaa