Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a,(1-x)(x+2)=0
=>1-x=0=>x=1
=>x+2=0=>x=-2
1b,(2x-2)(6+3x)(3x+2)=0
=>2x-2=0=>2(x-1)=0=>x=1
=>6+3x=0=>3x=-6=>x=-2
=>3x+2=0=>3x=-2=>x=-2/3
1c,(5x-5)(3x+2)(8x+4)(x^2-5)=0
=>5x-5=0=>5(x-1)=0=>x=1
=>3x+2=0=>x=-2/3
=>8x+4=0=>4(2x+1)=0=>2x+1=0=>2x=-1=>x=-1/2
=>x^2-5=0=>x^2=5=>x=\(+-\sqrt{5}\)
x=0
x=.................
x=-2, x=2/3
nối 2 cái xong còn cái nào bạn nối nốt nha
mình ko mang giấy bút nên ko vt đc
1. \(x^4+6x^3+11x^2+6x+1=0\)
\(\Leftrightarrow x^4+6x^3+9x^2+2x^2+6x+1=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)^2=0\)
\(\Leftrightarrow x^2+3x+1=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)
2. \(x^4+x^3-4x^2+x+1=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)+2.\frac{x}{2}\left(x^2+1\right)+\left(\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)
\(\Leftrightarrow\left(x^2+1+\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\x^2+3x+1=0\end{cases}}\)
+) ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
+) x2 + 3x + 1 = 0
<=> ( x + 3/2 )2 - 5/4 = 0
<=> ( x + 3/2 )2 = 5/4
<=> \(\hept{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)
Vậy pt có tập nghiệm \(S=\left\{1;\frac{-3+\sqrt{5}}{2};-\frac{3+\sqrt{5}}{2}\right\}\)
a) Ta có :
\(5x-3=x^2-3x+12\left(1\right)\)
\(x^2-3x+12=\left(x+1\right)\left(x-3\right)\left(2\right)\)
\(\left(x+1\right)\left(x-3\right)=5x-3\left(3\right)\)
b) Lập bảng :
x | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
5x - 3 | -28 | -23 | -18 | -13 | -8 | -3 | 2 | 7 | 12 | 17 | 22 |
\(x^2-3x+12\) | 52 | 40 | 30 | 22 | 16 | 12 | 10 | 10 | 12 | 16 | 22 |
(x+1)(x-3) | 32 | 21 | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 |
Từ bảng trên , ta có :
- Phương trình (1) có có tập nghiệm là \(S=\left\{3;5\right\}\)
- Phương trình (2) vô nghiệm \(S=\varnothing\)
- Phương trình (3) có tập nghiệm là \(S=\left\{0\right\}\)
1.Đ
2.S
3.S
4.Đ
5.S
6.Đ