Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi hoành độ tiếp điểm là \(m\). PT tiếp tuyến là:
\(y=y'(m)(x-m)+y(m)=\frac{-1}{(2m+3)^2}(x-m)+\frac{m+2}{2m+3}\)
\(\Leftrightarrow y=\frac{2m^2+8m+6-x}{(2m+3)^2}(d)\)
$A,B$ lần lượt thuộc $Ox,Oy$ nên có tọa độ là \((a,0);(0,b)\)
Mặt khác \(A,B\in (d)\Rightarrow \)\(\left\{\begin{matrix} 0=\frac{2m^2+8m+6-a}{(2m+3)^2}\rightarrow a=2m^2+8m+6\\ b=\frac{2m^2+8m+6}{(2m+3)^2}\end{matrix}\right.\)
Tam giác $AOB$ vuông cân tại $O$. Vì hiển nhiên tam giác trên vuông nên chỉ xét tính chất cân. Từ đây ta có \(OA^2=OB^2\Leftrightarrow a^2=b^2\)
\(\Leftrightarrow \frac{(2m^2+8m+6)^2}{(2m+3)^4}=(2m^2+8m+6)^2\)\(\Rightarrow\left[{}\begin{matrix}m=-3\\m=-2\\m=-1\end{matrix}\right.\)
Suy ra PTTT có thể là: \(\left[{}\begin{matrix}y=\dfrac{-x}{9}\\y=-\left(x+2\right)\\y=-x\end{matrix}\right.\)
Vì $A,B$ không thể trùng $O$ nên PTTT là \(y=-(x+2)\)