\(\frac{6}{\sqrt{\left(1+x^2\right)}}\)

tính t theo x

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

- Các ĐKXĐ tự tìm dùm mình hen :)

Ta có : \(D=\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)

=> \(D=\left(\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{1}{\sqrt{x}+2}\right)\left(\sqrt{x}-3\right)\)

=> \(D=\left(\frac{5+\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)

=> \(D=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)

=> \(D=\left(\frac{1}{\sqrt{x}-3}\right)\left(\sqrt{x}-3\right)=1\)

Ta có : \(E=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{a-2\sqrt{a}+1}\)

=> \(E=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{\left(\sqrt{a}-1\right)^2}\)

=> \(E=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

=> \(E=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

( làm đến đây thôi câu còn lại bạn tự làm hen )

Ghét nhất mấy câu viết sai đề b, c sai rất nhiều bạn ới

30 tháng 7 2020

đấy là mình đánh máy tính nên kéo dài hơi nhầm bạn ơi chứ không phải sai đề :))

3 tháng 8 2020

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có :

\(A=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{x-1}:\frac{1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\frac{\sqrt{x}+4}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+1}\)

\(=1\)

Vậy...

b/ ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có :

\(B=\left(\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}+6\right)\left(\frac{x\sqrt{x}-1}{x+\sqrt{x}+1}-3\right)\)

\(=\left(\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-2}+6\right)\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-3\right)\)

\(=\left(\sqrt{x}-2+6\right)\left(\sqrt{x}-1-3\right)\)

\(=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)\)

\(=x-16\)

Vậy..

c/ ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có :

\(C=\frac{2\sqrt{x}}{x-1}+\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}-x}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2x+\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2x-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{2}{\sqrt{x}}\)

Vậy..

1) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

2) \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)

3) \(\left(x+\frac{1}{3}\right)^4=\left[\left(x+\frac{1}{3}\right)^2\right]^2=\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)^2=x^4+\frac{4}{9}x^2+\frac{1}{81}+\frac{4}{3}x^3+\frac{4}{27}x+\frac{2}{9}x^2=x^4+\frac{2}{3}x^2+\frac{1}{81}+\frac{4}{3}x^3+\frac{4}{27}x\)

4) \(\left(2x+y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

5) Sửa đề: \(\left(\frac{x}{2}-2y\right)^3=\frac{x^3}{8}-\frac{3x^2}{2}+6xy^2-8y^3\)

6) \(\left(\sqrt{2x-y}\right)^4=\left(2x-y\right)^2=4x^2-4xy+y^2\)

7) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)

8) \(\left(x-3\right)\left(x^2+3x+9\right)=x^3-27\)

8 tháng 3 2020

c/\(P=\frac{\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}}{1-\frac{x+2}{x+\sqrt{x}+1}}\)\(\Leftrightarrow P=\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}:\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

\(\Leftrightarrow\frac{2\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

Xét P-1 ta có \(\frac{2x+2\sqrt[]{x}+2-x\sqrt{x}+1}{x\sqrt{x}-1}=\frac{2x+2\sqrt{x}-x\sqrt{x}+3}{x\sqrt{x}-1}\)

với x<1 thì tử dương, mẫu âm, với x>1 thì tử âm và mẫu dương

Từ đó ta luuon có P-1\(\le0\RightarrowĐPCM\)

8 tháng 3 2020

a/\(\Leftrightarrow x=\frac{5-\sqrt{5}}{1-\sqrt{5}}+\frac{5+\sqrt{5}}{1+\sqrt{5}}-\frac{25-5}{1-5}-1\)

\(\Leftrightarrow x=0+5-1\Leftrightarrow x=4\)

Thay vào B đc \(B=\frac{4+2}{4+2+1}=\frac{6}{7}\)

b/

4 tháng 8 2019

A = \(\frac{1}{x\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+8\right)}\)

= \(\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+8}\)

= \(\frac{1}{x}-\frac{1}{x+8}\)

= \(\frac{x+8}{x\left(x+8\right)}-\frac{x}{x\left(x+8\right)}\)

= \(\frac{x+8-x}{x\left(x+8\right)}\) = \(\frac{8}{x\left(x+8\right)}\)