Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(I=\int\dfrac{x}{1-cos2x}dx=\int\dfrac{x}{2sin^2x}dx\)
Đặt \(\left\{{}\begin{matrix}u=\dfrac{x}{2}\\dv=\dfrac{1}{sin^2x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{2}\\v=-cotx\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int cotxdx=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int\dfrac{cosx.dx}{sinx}\)
\(=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int\dfrac{d\left(sinx\right)}{sinx}=\dfrac{-x.cotx}{2}+\dfrac{1}{2}ln\left|sinx\right|+C\)
2/ Câu 2 bữa trước làm rồi, bạn coi lại nhé
3/ \(I=\int\left(2x+1\right)ln^2xdx\)
Đặt \(\left\{{}\begin{matrix}u=ln^2x\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{2lnx}{x}dx\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)ln^2x-\int\left(2x+2\right)lnxdx=\left(x^2+x\right)ln^2x-I_1\)
\(I_1=\int\left(2x+2\right)lnx.dx\) \(\Rightarrow\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+2\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x^2+2x\end{matrix}\right.\)
\(\Rightarrow I_1=\left(x^2+2x\right)lnx-\int\left(x+2\right)dx=\left(x^2+2x\right)ln-\dfrac{x^2}{2}+2x+C\)
\(\Rightarrow I=\left(x^2+x\right)ln^2x-\left(x^2+2x\right)lnx+\dfrac{x^2}{2}-2x+C\)
4/ \(I=\int\left(2x-1\right)cosx.dx\) \(\Rightarrow\left\{{}\begin{matrix}u=2x-1\\dv=cosx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=sinx\end{matrix}\right.\)
\(\Rightarrow I=\left(2x-1\right)sinx-2\int sinx.dx=\left(2x-1\right)sinx+2cosx+C\)
5/ \(I=\int\left(x^2+x+1\right)e^xdx\) \(\Rightarrow\left\{{}\begin{matrix}u=x^2+x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\left(2x+1\right)dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x+1\right)e^x-\int\left(2x+1\right)e^xdx\)
\(I_1=\int\left(2x+1\right)e^xdx\) \(\Rightarrow\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I_1=\left(2x+1\right)e^x-2\int e^xdx=\left(2x+1\right)e^x-2e^x+C=\left(2x-1\right)e^x+C\)
\(\Rightarrow I=\left(x^2+x+1\right)e^x-\left(2x-1\right)e^x+C=\left(x^2-x+2\right)e^x+C\)
6/ \(I=\int\left(2x+1\right).ln\left(x+2\right)dx\)
\(\Rightarrow\left\{{}\begin{matrix}u=ln\left(x+2\right)\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x+2}\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)ln\left(x+2\right)-\int\dfrac{x^2+x}{x+2}dx\)
\(=\left(x^2+x\right)ln\left(x+2\right)-\int\left(x-1+\dfrac{2}{x+2}\right)dx\)
\(I=\left(x^2+x\right)ln\left(x+2\right)-\dfrac{x^2}{2}+x-2ln\left|x+2\right|+C\)
Nhớ quy tắc ưu tiên khi tính nguyên hàm từng phần:
- Đặt u sẽ ưu tiên các hàm ln, log đầu tiên (luôn luôn đặt các hàm này là u nếu có mặt), sau đó đến các hàm đa thức P(x), sau đó là lượng giác hoặc e^
- Đặt dv thì theo thứ tự ngược lại, ưu tiên đặt lượng giác (sin, cos) và e^
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để ý đến công thức đổi cơ số logarit \(\log_2\left(1-3x\right)=\frac{1}{\ln2}\ln\left(1-3x\right)\)
Ta viết nguyên hàm đã cho dưới dạng \(I_1=\frac{1}{\ln2}\int\ln\left(1-3x\right)dx\)
Đặt \(u=\ln\left(1-3x\right)\) , \(dv=dx\)
Khi đó \(du=\frac{-3}{1-3x}dx\), \(v=x\)
Do đó :
\(I_1=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)+3\int\frac{x}{1-3x}dx\right]\)
\(=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)+3\int\frac{1}{3}\left(-1+\frac{1}{1-3x}\right)dx\right]\)
\(=\frac{1}{\ln2}\left[x\ln\left(1-3x\right)-\int dx+\frac{dx}{1-3x}\right]\)
\(=\frac{1}{\ln2}\left[\left(x-\frac{1}{3}\right)\ln\left(1-3x\right)-x\right]+C\)
b) Đặt \(u=\left(\ln x\right)^2\) , \(dv=\left(2x-3\right)dx\)
Khi đó \(du=2\ln x\frac{dx}{x}\) , \(v=x^2-3x\)
Do đó
\(I_2=\left(x^2-3x\right)\left(\ln x\right)^2-2\int\left(x-3\right)\ln xdx\)
\(\int\left(x-3\right)\ln xdx=I_2\)
Ta tính \(I_2\) Ta tìm nguyên hàm bằng cách lấy nguyên hàm từng phàn một làn nữa và thu được.
\(I_2=\left(\frac{1}{2}x^2-3x\right)\ln x-\int\left(\frac{1}{2}x-3\right)dx=\frac{1}{2}\left(x^2-6x\right)\ln x-\frac{1}{4}x^2+3x\)
Từ đó suy ra \(I_2=\left(x^2-3x\right)\left(\ln x\right)^2-\left(x^2-6x\right)\ln x+\frac{1}{2}x^2-6x+C\)
c) Đặt \(u=\ln x\) , \(dv=\left(4x^2+6x-7\right)dx\)
khi đó \(du=\frac{dx}{x}\) , \(v=\int\left(4x^2+6x-7\right)dx=x^4+3x^2-7x\)
Do đó
\(I_3=\left(x^4+3x^2-7x\right)\ln x-\int\frac{x^4+3x^2-7x}{x}dx\)
\(=\left(x^4+3x^2-7x\right)\ln x-\left(\frac{x^4}{4}+\frac{3x^2}{2}-7x\right)+C\)
a) Áp dụng phương pháp tìm nguyên hàm từng phần:
Đặt u= ln(1+x)
dv= xdx
=>
, ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?v%3D%5Cfrac%7Bx%5E%7B2%7D-1%7D%7B2%7D)
Ta có: ∫xln(1+x)dx =![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cfrac%7B1%7D%7B2%7D.%28x%5E%7B2%7D-1%29ln%281+x%29-%5Cfrac%7B1%7D%7B2%7D%5Cint%20%28x-1%29dx%29)
=![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cfrac%7B1%7D%7B2%7D.%28x%5E%7B2%7D-1%29ln%281+x%29-%5Cfrac%7B1%7D%7B4%7Dx%5E%7B2%7D+%5Cfrac%7Bx%7D%7B2%7D+C)
b) Cách 1: Tìm nguyên hàm từng phần hai lần:
Đặt u= (x2+2x -1) và dv=exdx
Suy ra du = (2x+2)dx, v = ex
. Khi đó:
∫(x2+2x - 1)exdx = (x2+2x - 1)exdx - ∫(2x+2)exdx
Đặt : u=2x+2; dv=exdx
=> du = 2dx ;v=ex
Khi đó:∫(2x+2)exdx = (2x+2)ex - 2∫exdx = ex(2x+2) – 2ex+C
Vậy
∫(x2+2x+1)exdx = ex(x2-1) + C
Cách 2: HD: Ta tìm ∫(x2-1)exdx. Đặt u = x2-1 và dv=exdx.
Đáp số : ex(x2-1) + C
c) Đáp số:![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?-%5Cfrac%7Bx%7D%7B2%7Dcos%20%282x+1%29+%20%5Cfrac%7B1%7D%7B4%7Dsin%282x+1%29+C)
HD: Đặt u=x ; dv = sin(2x+1)dx
d) Đáp số : (1-x)sinx - cosx +C.
HD: Đặt u = 1 - x ;dv = cosxdx