Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét A là 1 người bất kỳ trong phòng
\(\Rightarrow\)A quen ít nhất người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là
Trong phòng còn lại người. \(\Rightarrow\)gọi là 1 người quen \(\Rightarrow\) có nhiều nhất người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là \(\Rightarrow\)gọi là 1 người quen và \(\Rightarrow\) không quen nhiều nhất người trong phòng
\(\Rightarrow\)trong phòng còn lại 4 người \(\Rightarrow\)ngoài A,B,C còn 1 người giả sử là D,khi đó A,B,C,D đôi 1 quen nhau(đpcm)
Do trong phòng có 100 người, mỗi người quen it nhất 67 người còn lại nên số người mà người đó không quen nhiều nhất là:
100-67-1= 32( người)
Ta giả sử 1 người bất kỳ trong 100 người đó là A. Nếu ta loại những người mà A không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68 người( trong đó có A).
Ta lại giả sử 1 trong 68 người còn lại trong phòng( khác A) là B. Nếu ta loại đi những người mà B không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68-32=36( người) trong đó có A và B.
............................. 36......................................(khác A,B) là C.............................................C................................................
.....................................36-32=4( người) trong đó có A,B và C.
Trong 4 người còn lại ta giả sử người khác A,B,C là D thì khi đó trong phòng có 4 người: A,B,C và D suy ra A,B,C,D đôi một quen nhau. Do đó tìm được 4 người mà 2 người bất kì trong số đó đều quen nhau( đpcm)