K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

 \(BDT\Leftrightarrow a^2+b^2+c^2+2abc+1-2\left(ab+bc+ca\right)\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(c-1\right)^2+2c\left(a-1\right)\left(b-1\right)\ge0\)

Từ đây ta thấy trong 3 số a,b,c sẽ có 2 số hoặc cùng \(\ge1\) hoặc cùng \(\le1\).giả sử 2 số đó là a và b suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)

Vậy BĐT đầu luôn đúng

14 tháng 1 2017

Thích Dirichlet thì chơi Dirichlet

Theo nguyên lý Dirichlet thì trong ba số (a - 1); (b - 1); (c - 1) luôn tồn tại ít nhất 2 số cùng dấu.

Không mất tính tổng quát ta giả sử hai số đó là (a - 1) và (b - 1).

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow2abc\ge2\left(ac+bc-c\right)\)

Giờ ta cần chứng minh 

\(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

 \(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\)

 Dấu = xảy ra khi a = b = c = 1

Cho x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

Cho x,y>0x,y>0 thỏa mãn x3+y3=x−y. Chứng minh: x2+y2<1.

.............................

14 tháng 8 2018

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

27 tháng 8 2018

Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:

Ta có:

\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)

=> \(2n+2\sqrt{n^2-a^2}< 4n\)

=>\(2\sqrt{n^2-a^2}< 2n\)

=>\(\sqrt{n^2-a^2}< n\)

=>n2 - a< n(bình phương cả 2 vế)

Vì |a|>0

=>a2 > 0

=> n2-a< n

Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)

câu b làm tương tự nhé: