\(\sqrt{x}+\sqrt{y}=\sqrt{18}.\left(Tìm.x,y.nguyên,dương\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

\(\frac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\frac{\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2-y+\left(\sqrt{x}-\sqrt{z}\right)^2}{\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2-x+\left(\sqrt{y}-\sqrt{z}\right)^2}\)

\(=\frac{\left(\sqrt{x}+2\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)+\left(\sqrt{x}-\sqrt{z}\right)^2}{\left(2\sqrt{x}+\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)+\left(\sqrt{y}-\sqrt{z}\right)^2}\)

\(=\frac{\left(\sqrt{x}-\sqrt{z}\right)\left(2\sqrt{x}+2\sqrt{y}-2\sqrt{z}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(2\sqrt{x}+2\sqrt{y}-2\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)

27 tháng 6 2018

Ta có \(4x+4y+4z+4\sqrt{xyz}=16\Rightarrow4x+4\sqrt{xyz}+yz=yz-4y-4z+16\)

=> \(\left(2\sqrt{x}+\sqrt{yz}\right)^2=\left(4-y\right)\left(4-z\right)\Rightarrow\sqrt{\left(4-y\right)\left(4-z\right)}=2\sqrt{x}+\sqrt{yz}\)

=> \(\sqrt{x}\sqrt{\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)

Tương tự, rồi cộng lại, ta có 

\(S=2\left(x+y+z\right)+3\sqrt{xyz}-\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=8\)

Vậy S=8 

^_^

23 tháng 11 2019

Bạn ghi sai đề thì phải giả thiết phải là \(x+y+z+\sqrt{xyz}=4\)

Khi đó suy ra \(4\left(x+y+z\right)+4\sqrt{xyz}=16\)

Ta có: \(x\left(4-y\right)\left(4-z\right)=x[16-4\left(y+z\right)+yz]=x[4\left(x+y+z\right)+4\sqrt{xyz}-4\left(y+z\right)+yz]\)

\(=x\left(4x+4\sqrt{xyz}+yz\right)=x\left(2\sqrt{x}+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x}\left(2\sqrt{x}+\sqrt{yz}\right)=2x+\sqrt{xyz}\)

tương tự \(\left\{{}\begin{matrix}\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\\\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\end{matrix}\right.\)

Cộng lại ta được VT\(=\) \(2\left(x+y+z+\sqrt{xyz}\right)+\sqrt{xyz}\) \(=8+\sqrt{xyz}\)(điều phải chứng minh)

16 tháng 7 2018

pt đã cho <=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)-2\left(x+y\right)-\left(x+y+2\sqrt{xy}\right)+2\sqrt{xy}+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)-2\left(x+y\right)+2\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}-2\right)^2=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}-2\right)\left(x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2\right)=0\)

<=>\(\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=2\\x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2=0\end{cases}}\)

th2: nhân cả hai vế với 2 ta được

\(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+2>0\)

=>th2 vô nghiệm

do đó M=\(\sqrt{xy}\)

áp dụng bdt cô si ta có \(\sqrt{x}+\sqrt{y}>=2\sqrt{\sqrt{xy}}\)

<=>1>=\(\sqrt{\sqrt{xy}}\)(do \(\sqrt{x}+\sqrt{y}=2\))

<=>\(\sqrt{xy}< =1\)

<=>M<=1

1 tháng 6 2017

Ta có : \(3\sqrt{xyz}=\sqrt{x}^2+\sqrt{y}^3+\sqrt{z}^3\ge3\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}=3\sqrt{x}\sqrt{y}\sqrt{z}=3\sqrt{xyz}.\)

Dấu = xảy ra

=> x =y =z

=> A = (1+1)(1+1)(1+1) =8

1 tháng 6 2017

mk thấy nó sai sai . Tại sao 3\(\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}\) = 3\(\sqrt{x}\sqrt{y}\sqrt{z}\)

29 tháng 10 2018

biết làm rồi

30 tháng 10 2018

VẬy bạn giải ra cho mọi người xem được ko?

Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!

16 tháng 3 2017

gợi ý nè

1) \(ab+c=ab+c\left(a+b+c\right)\)....

2) nhiều cách lắm nhưng tớ chỉ đưa ra 2 cách ...có vẻ hay

đặt \(\sqrt{x}=a,\sqrt{y}=b\)

=>a3+b3=a4+b4=a5+b5

c1: ta có: \(\left(a^3+b^3\right)\left(a^5+b^5\right)=\left(a^4+b^4\right)^2\)......

c2: a5+b5=(a+b)(a4+b4)-ab(a3+b3)

=> 1=(a+b)-ab .......

3) try use UCT

4) tính sau =))

17 tháng 3 2017

gợi ý ??