Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=1:\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{3x}{2\left(x-4\right)}+\dfrac{2}{2\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{1}{4-2\sqrt{x}}\)
\(=1:\left(\dfrac{2\left(\sqrt{x}-2\right)-3x+2\sqrt{x}+4}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)
\(=1:\dfrac{2\sqrt{x}-4-3x+2\sqrt{x}+4}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)
\(=\dfrac{2\left(x-4\right)}{-3x+4\sqrt{x}}\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}+2}{3x-4\sqrt{x}}\)
b: Để P=20 thì \(\sqrt{x}+2=60x-80\sqrt{x}\)
\(\Leftrightarrow60x-81\sqrt{x}-2=0\)
Đặt \(\sqrt{x}=a\)
Pt sẽ là \(60a^2-81a-2=0\)
\(\text{Δ}=\left(-81\right)^2-4\cdot60\cdot\left(-2\right)=7041>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{81-\sqrt{7041}}{120}\left(loại\right)\\a_2=\dfrac{81+\sqrt{7041}}{120}\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\left(\dfrac{81+\sqrt{7041}}{120}\right)^2\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
A=\(\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
= \(\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\) (dk x>=4)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
th1 x\(\ge8\) ta co\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
th2 4<=x<8 ta co \(\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
a) Ta có:
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-4}{\sqrt{x}-2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x}}\)
\(A=\frac{\left(\sqrt{x}-3\right)\sqrt{x}+\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{x-3\sqrt{x}+x-6\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(A=\frac{2x-9\sqrt{x}+8}{\left(\sqrt{x}-2\right)\sqrt{x}}\)
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\frac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2+\sqrt{x^2-4}\right)\left(x+2-\sqrt{x^2-4}\right)}\)
\(=\frac{\left(x^2+4+x^2-4+4x+2\sqrt{x^2-4}+x\sqrt{x^2-4}\right)+\left(x^2+4+x^2-4+4x-2\sqrt{x^2-4}-x\sqrt{x^2-4}\right)}{x^2+2x-x\sqrt{x^2-4}+2x+4-2\sqrt{x^2-4}+x\sqrt{x^2-4}+2\sqrt{x^2-4}-x^2+4}\)\(=\frac{4x^2+8x}{4x+8}=\frac{4x\left(x+2\right)}{4\left(x+2\right)}=x\)
\(DK:x\ne1,-1,-2\)
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\frac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)}{\left(x+2\right)^2-x^2+4}\)
\(=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{4x+8}\)
\(=\frac{4x^2+8x-8}{4x+8}\)
\(=\frac{x^2+2x-2}{x+2}\)