Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`B=sqrtx/(sqrtx+3)+(2sqrtx)/(\sqrtx-3)-(3x+9)/(x-9)(x>0,x ne 9)`
`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`
`=(3sqrtx-9)/(x-9)`
`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`
`=3/(sqrtx+3)`
`P=A.B=3/x`
`Px+3\sqrt{x-5}=x-2sqrtx+7(x>=5)`
`<=>3+3\sqrt{x-5}=x-2sqrtx+7`
`<=>x-2sqrtx+4-3\sqrt{x-5}=0`
`<=>2x-4sqrtx+8-6sqrt{x-5}=0`
`<=>x-4sqrtx+4+x-5-6sqrt{x-5}+9=0`
`<=>(sqrtx-2)^2+(\sqrt{x-5}-3)^2=0`
Dấu "=" xảy ra khi $\begin{cases}x=4\\x=14\\\end{cases}(l)$
Vậy khong có giá trị của x thể pt có nghiệm
\(\Delta=9-4m>0\Rightarrow m< \dfrac{9}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{\left(x_1^2+1\right)\left(x_2^2+1\right)}=27\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\sqrt{\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}=25\)
\(\Leftrightarrow9-2m+2\sqrt{m^2+9-2m+1}=25\)
\(\Leftrightarrow\sqrt{m^2-2m+10}=m+8\left(m\ge-8\right)\)
\(\Leftrightarrow m^2-2m+10=m^2+16m+64\)
\(\Rightarrow m=-3\) (thỏa mãn)
Pt trên có a=1, b=5, c=-3m+2
\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0 <=>m> 17/12
Theo hệ thức Viet, ta có:
\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)
=> 12m = -7 <=>m=-7/12 (thỏa đkxđ)
Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10
(1)Phương trình đã cho tương đương với:
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là . Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:
Phương trình đã cho tương đương với:
=0
=0
vì với
thì: