Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
ĐKXĐ: ...
\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)
Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)
\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)
Pt trở thành:
\(3t=t^2-10\)
\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)
Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)
\(\Rightarrow VT\le VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
b. 2 + \(\sqrt{2x-1}=x\) ĐKXĐ: \(x\ge0,5\)
<=> \(\sqrt{2x-1}\) = x - 2
<=> 2x - 1 = (x - 2)2
<=> 2x - 1 = x2 - 4x + 4
<=> -x2 + 2x + 4x - 4 - 1 = 0
<=> -x2 + 6x - 5 = 0
<=> -x2 + 5x + x - 5 = 0
<=> -(-x2 + 5x + x - 5) = 0
<=> x2 - 5x - x + 5 = 0
<=> x(x - 5) - (x - 5) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
đkxđ: ....
\(\sqrt{x+4}+\sqrt{x+11}=x+27-x^2\)
\(\Leftrightarrow x+4+2\sqrt{\left(x+4\right)\left(x+11\right)}+x+1=x^2+729+x^4+54x-2x^3-54x^2\)
\(\Leftrightarrow2x+5+2\sqrt{\left(x+4\right)\left(x+11\right)}=x^4-2x^3-53x^2+54x+729\)
\(\Leftrightarrow2\sqrt{x^2+15x+44}=x^4-2x^3-53x^2+52x+724\)
\(\Leftrightarrow2\sqrt{x^2+15x+44}=\left(x-2\right)\left(x^3-53x-54\right)+616\)
.........
Lời giải:
Đặt \((\sqrt{x-y},\sqrt{x+y})=(b,a)\)
HPT trở thành: \(\left\{\begin{matrix} a-b=2(1)\\ \sqrt{\frac{a^4+b^4}{2}}+ab=4(2)\end{matrix}\right.\)
\((2)\Leftrightarrow \sqrt{\frac{a^4+b^4}{2}}=4-ab\). Bình phương hai vế:
\(\Rightarrow \frac{a^4+b^4}{2}=16+a^2b^2-8ab\)
\(\Leftrightarrow a^4+b^4-2a^2b^2=32-16ab\)
\(\Leftrightarrow (a^2-b^2)^2=32-16ab\Leftrightarrow 4(a+b)^2=32-16ab\) (do \(a-b=2\) )
\(\Leftrightarrow (a+b)^2=8-4ab\)
Thay \(a=b+2\Rightarrow (2b+2)^2=8-4b(b+2)\)
\(\Leftrightarrow (b+1)^2=2-b(b+2)\Leftrightarrow 2b^2+4b-1=0\)
\(\Rightarrow b=\frac{-2+\sqrt{6}}{2}\) (do \(b\geq 0\))
Từ đó kéo theo \(a=\frac{2+\sqrt{6}}{2}\). Từ đây suy ra \((x,y)=(\frac{5}{2},\sqrt{6})\)
dk \(\hept{\begin{cases}3x^2-1\ge0\\x^2-x\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{\sqrt{3}}\end{cases}}}\)(1)
\(< =>2\sqrt{6x^2-2}+2\sqrt{2x^2-2x}-2x\sqrt{2x^2+2}\)=7x2-x+4
<=> (3x2-1)-2\(\sqrt{2}.\sqrt{3x^2-1}\)+ 2 + (x2+1)+2x\(\sqrt{2}.\sqrt{x^2+1}\)+2x2 + (x2-x) - 2\(\sqrt{2}\sqrt{x^2-x}\)+2 =0
<=> \(\left(\sqrt{3x^2-1}-1\right)^2+\left(\sqrt{x^2+1}+x\sqrt{2}\right)^2\)+\(\left(\sqrt{x^2-x}-\sqrt{2}\right)^2=0\)
<=> \(\hept{\begin{cases}\sqrt{3x^2-1}=\sqrt{2}\\\sqrt{x^2+1}+x\sqrt{2}=0\\\sqrt{x^2-x}=\sqrt{2}\end{cases}}< =>\hept{\begin{cases}3x^2=3\\x^2+1=2x^2\left(x< 0\right)\\x^2-x-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x^2=1\\\left(x+1\right)\left(x-2\right)=0\end{cases}< =>x=-1}\) (thỏa mãn điều kiện (1)
vậy x=-1 là nghiệm
\(\sqrt{x^2+x-20}=\sqrt{x-4}\)( đk:x\(\ge4\))
\(\Leftrightarrow\sqrt{\left(x-4\right)\left(x+5\right)}-\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x-4}\left(\sqrt{x+5}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+5}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(TM\right)\\x=-4\left(loại\right)\end{matrix}\right.\)
Vậy x=4 là nghiệm của phương trình