Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
Giải pt :
1
a. ĐKXĐ : \(x\ge4\)
Ta có :
\(\sqrt{x+3}-\sqrt{x-4}=1\\ \Leftrightarrow\sqrt{x+3}=1+\sqrt{x-4}\\ \Leftrightarrow x+3=x-3+2\sqrt{x-4}\\ \Leftrightarrow6=2\sqrt{x-4}\)
\(\Leftrightarrow3=\sqrt{x-4}\\ \Leftrightarrow x-4=9\)
\(\Leftrightarrow x=13\) (TM ĐKXĐ)
Vậy \(S=\left\{13\right\}\)
b.ĐKXĐ : \(-3\le x\le10\)
Ta có :
\(\sqrt{10-x}+\sqrt{x+3}=5\\ \Leftrightarrow13+2\sqrt{-x^2+7x+30}=25\\ \Leftrightarrow\sqrt{-x^2+7x+30}=6\\ \Leftrightarrow-x^2+7x+30=36\\ \Leftrightarrow-x^2+7x-6=0\\ \Leftrightarrow-x^2+x+6x-6=0\\ \Leftrightarrow-x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(TMĐKXĐ\right)\\x=6\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy \(S=\left\{1;6\right\}\)
6.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2\end{matrix}\right.\)
4.
ĐKXĐ: \(x\ge4\)
Đặt \(\sqrt{x-4}=t\ge0\Rightarrow x=t^2+4\)
\(\Rightarrow3\left(t^2+4\right)+7t=14t-20\)
\(\Leftrightarrow3t^2-7t+34=0\)
Phương trình vô nghiệm
5.
ĐKXĐ: ...
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\Rightarrow\sqrt{x+1}-1\ne0\) , nhân 2 vế của pt cho \(\sqrt{x+1}-1\) và rút gọn ta được:
\(\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)
\(\Leftrightarrow2x=4\Rightarrow x=2\)
b) \(< =>\sqrt{x+1}\left(\sqrt{x^2-x+1}+\sqrt{x+3}\right)=0\)
<=> x=-1
hoặc \(x^2-x+1=x+3\) => \(x^2-2x-2=0...\)
Câu 6:
ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)-2\sqrt{x-1}+1}-\sqrt{x-1}=1$
$\Leftrightarrow \sqrt{(\sqrt{x-1}-1)^2}=\sqrt{x-1}+1$
$\Leftrightarrow |\sqrt{x-1}-1|=\sqrt{x-1}+1$
Nếu $\sqrt{x-1}-1\geq 0$ thì PT trở thành:
$\sqrt{x-1}-1=\sqrt{x-1}+1\Leftrightarrow 2=0$ (vô lý)
Nếu $\sqrt{x-1}-1< 0$ (tương đương với $1\leq x< 2$ thì PT trở thành:
$1-\sqrt{x-1}=\sqrt{x-1}+1$
$\Leftrightarrow \sqrt{x-1}=0\Rightarrow x=1$ (thỏa mãn)
Vậy PT có nghiệm $x=1$
Câu 5:
ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)-4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=1$
$\Leftrightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=1$
$\Leftrightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1$
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=|\sqrt{x-1}-2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}-2+3-\sqrt{x-1}|=1$
Dấu "=" xảy ra khi $(\sqrt{x-1}-2)(3-\sqrt{x-1})\geq 0$
$\Leftrightarrow 3\geq \sqrt{x-1}\geq 2$
$\Leftrightarrow 10\geq x\geq 5$. Kết hợp ĐKXĐ ta thấy những giá trị $x$ thỏa mãn $10\geq x\geq 5$ là nghiệm của pt.
f/
ĐKXĐ: ...
Đặt \(\sqrt{2-x}+\sqrt{x+2}=a>0\)
\(\Rightarrow a^2=4+2\sqrt{4-x^2}\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}\)
Phương trình trở thành:
\(a+\frac{a^2-4}{2}=2\)
\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{4-x^2}=\frac{a^2-4}{2}=0\)
\(\Rightarrow4-x^2=0\Rightarrow x=\pm2\)
e/ ĐKXĐ: ...
Đặt \(\sqrt{x+1}+\sqrt{4-x}=a>0\)
\(\Rightarrow a^2=5+2\sqrt{\left(x+1\right)\left(4-x\right)}\Rightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{a^2-5}{2}\)
Pt trở thành:
\(a+\frac{a^2-5}{2}=5\)
\(\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}+\sqrt{4-x}=3\)
\(\Leftrightarrow5+2\sqrt{\left(x+1\right)\left(4-x\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=2\)
\(\Leftrightarrow\left(x+1\right)\left(4-x\right)=4\)
\(\Leftrightarrow-x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(\sqrt{x}+2\sqrt{x+3}=x+4\left(đkxđ:x\ge-3\right)\)
\(\Leftrightarrow2\sqrt{x}+4\sqrt{x+3}=2x+8\)
\(\Leftrightarrow2x+8-2\sqrt{x}-4\sqrt{x+3}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{x+3}-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{x+3}-2=0\end{cases}\Leftrightarrow}x=1\left(tmđk\right)}\)
Vậy x=1 là nghiệm của phương trình
\(ĐK:x\ge0\)
\(\sqrt{x}+2\sqrt{x+3}=x+4\Leftrightarrow\left(\sqrt{x}-x\right)+2\left(\sqrt{x+3}-2\right)=0\)\(\Leftrightarrow\frac{x\left(1-x\right)}{\sqrt{x}+x}+2.\frac{x-1}{\sqrt{x+3}+2}=0\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{x+3}+2}-\frac{x}{\sqrt{x}+x}\right)=0\)(Đến đây có thêm điều kiện x khác 0)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\frac{2}{\sqrt{x+3}+2}=\frac{x}{\sqrt{x}+x}\end{cases}}\)
Xét phương trình \(\frac{2}{\sqrt{x+3}+2}=\frac{x}{\sqrt{x}+x}\Leftrightarrow2\sqrt{x}+2x=x\sqrt{x+3}+2x\)\(\Leftrightarrow2\sqrt{x}=x\sqrt{x+3}\Leftrightarrow4x=x^2\left(x+3\right)\Leftrightarrow x^3+3x^2-4x=0\)\(\Leftrightarrow x\left(x+4\right)\left(x-1\right)=0\Rightarrow x=1\)(Vì x = 0; x = -4 không thỏa mãn điều kiện)
Vậy phương trình có 1 nghiệm duy nhất là 1