\(\sqrt{x+2\sqrt{2x-4}}\)+\(\sqrt{x-2\sqrt{x-4}}\)

Tinh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

\(ĐKXĐ:x\ge4\)

Đặt \(A=\sqrt{x+2\sqrt{x-4}}+\sqrt{x-2\sqrt{x-4}}\)

\(\Rightarrow A=\sqrt{\left(x-4\right)+2\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-2\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

\(=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)

\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

TH1: Nếu \(4\le x\le8\)\(\Rightarrow\sqrt{x-4}-2\le0\)

\(\Rightarrow\left|\sqrt{x-4}-2\right|=2-\sqrt{x-4}\)

\(\Rightarrow A=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

TH2: Nếu \(x>8\)\(\Rightarrow\sqrt{x-4}-2>0\)

\(\Rightarrow\left|\sqrt{x-4}-2\right|=\sqrt{x-4}-2\)

\(\Rightarrow A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

20 tháng 8 2016

a/ Sai đề. 

\(x+2\sqrt{2x-4}=\left(x-2\right)+2.\sqrt{2}.\sqrt{x-2}+2=\left(\sqrt{2}+\sqrt{x-2}\right)^2\)

b/ \(M=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{x-2}\right)^2}\)

\(=\sqrt{2}+\sqrt{x-2}+\left|\sqrt{2}-\sqrt{x-2}\right|\)

1. Nếu \(2\le x\le4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)

2. Nếu \(x>4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

a) ĐK: \(x\geq \frac{1}{2}\)

Ta có: \(\sqrt{2x-1}-\sqrt{x+1}=2x-4\)

\(\Leftrightarrow \frac{(2x-1)-(x+1)}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)

\(\Leftrightarrow \frac{x-2}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)

\(\Leftrightarrow (x-2)\left(\frac{1}{\sqrt{2x-1}+\sqrt{x+1}}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x-2=0\leftrightarrow x=2\\ \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}=2(*)\end{matrix}\right.\)

Đối với $(*)$:

\(x\geq \frac{1}{2}\Rightarrow \sqrt{2x-1}+\sqrt{x+1}\geq \sqrt{\frac{1}{2}+1}>1\)

\(\Rightarrow \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}< 1\)

Do đó $(*)$ vô nghiệm

Vậy pt có nghiệm duy nhất $x=2$

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

b) ĐK:.....

\(\sqrt{2x^2-3x+10}+\sqrt{2x^2-5x+4}=x+3\)

TH1:

\(\sqrt{2x^2-3x+10}=\sqrt{2x^2-5x+4}\)

\(\Rightarrow 2x^2-3x+10=2x^2-5x+4\)

\(\Rightarrow 2x+6=0\Rightarrow x=-3\) (thử lại thấy không thỏa mãn)

TH2: \(\sqrt{2x^2-3x+10}\neq \sqrt{2x^2-5x+4}\), tức là \(x\neq -3\)

PT ban đầu tương đương với:

\(\frac{(2x^2-3x+10)-(2x^2-5x+4)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)

\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)

\(\Leftrightarrow \frac{2}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=1\) (do \(x\neq -3\) )

\(\Rightarrow \sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}=2\)

\(\Rightarrow \sqrt{2x^2-3x+10}=2+\sqrt{2x^2-5x+4}\)

Bình phương 2 vế:

\(2x^2-3x+10=4+2x^2-5x+4+4\sqrt{2x^2-5x+4}\)

\(\Leftrightarrow x+1=2\sqrt{2x^2-5x+4}\)

\(\Rightarrow (x+1)^2=4(2x^2-5x+4)\)

\(\Rightarrow 7x^2-22x+15=0\Rightarrow \left[\begin{matrix} x=\frac{15}{7}\\ x=1\end{matrix}\right.\) (thử đều thấy t/m)

Vậy...........

 

 

 

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

\(H=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{(x-2)+2+2\sqrt{2(x-2)}}+\sqrt{(x-2)+2-2\sqrt{2(x-2)}}\)

\(=\sqrt{(\sqrt{x-2}+\sqrt{2})^2}+\sqrt{(\sqrt{x-2}-\sqrt{2})^2}\)

\(=|\sqrt{x-2}+\sqrt{2}|+|\sqrt{x-2}-\sqrt{2}|\)

Nếu $x\geq 4$ thì $H=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}$

Nếu $2\leq x< 4$ thì $H=\sqrt{x-2}+\sqrt{2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}$

22 tháng 6 2018

phần a nhân căn 2 cả tử và mẫu bạn nha

22 tháng 6 2018

phần a nhân căn 2 cả tử và mẫu . 

bài này mình rồi bạn ạ .

22 tháng 6 2018

\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x+2.\sqrt{2}.\sqrt{x-2}}+\sqrt{x-2.\sqrt{2}.\sqrt{x-2}}=\sqrt{x-2+2.\sqrt{2}.\sqrt{x-2}+2}+\sqrt{x-2-2.\sqrt{2}.\sqrt{x-2}+2}=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}=\text{|}\sqrt{x-2}+\sqrt{2}\text{|}+\text{|}\sqrt{x-2}-\sqrt{2}\text{|}=2\sqrt{x-2}\)\(B^2=\left(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}\right)^2=2x+2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2x+2\sqrt{\left(x^2-\left(2x-1\right)^2\right)}\left(ban-tu-tinh-not-nhe\right)\)

22 tháng 6 2018

Phùng Khánh Linh mk tính không ra

a: \(=4x-4x\sqrt{2}-2x\sqrt{2}+2x=6x-6x\sqrt{2}\)

b: \(=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-\sqrt{xy}-2y\)

18 tháng 9 2016

a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)

b,\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}=\sqrt{2}+3-3+\sqrt{2}=2\sqrt{2}\)

c, \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x=3x-2x=x\)

d, câu này sai đề rồi , nếu sửa lại phải như này :

\(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(4-x\right)^2}=x-4+4-x=0\)

23 tháng 6 2017

a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)

b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)

c) \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x\) = \(\left|3x\right|-2x=-3x-2x\) (x < 0)

= \(-5x\)

d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)

= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) ( \(x>4\))

= \(2x-8\)

NV
10 tháng 10 2019

1/ \(\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)

\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}\)

\(=2\)

2/ ĐKXĐ: \(a^2-1\ge0\Rightarrow a^2\ge1\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)

3/ \(4\left|x\right|-\sqrt{\left(5x-1\right)^2}=4\left|x\right|-\left|5x-1\right|\)

\(=4x-\left(5x-1\right)=1-x\)

4/ \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}< \sqrt{7}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x< 7\end{matrix}\right.\) \(\Rightarrow0\le x< 7\)

5/ \(M=\sqrt{3-2\sqrt{2.3}+2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)

6/ \(\left|x\right|-\sqrt{\left(x-1\right)^2}=\left|x\right|-\left|x-1\right|=x-\left(x-1\right)=1\)

10 tháng 10 2019

1.

\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}\)

\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1-2\sqrt{2x-1}+1}\)

\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(=\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\sqrt{2x-1}+1+1-\sqrt{2x-1}=2\)

2.

\(\sqrt{a^2-1}\text{ xác định }\Leftrightarrow a^2-1\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+1\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)

3.

\(4\left|x\right|-\sqrt{1+25x^2-10x}\)

\(=4\left|x\right|-\sqrt{\left(5x-1\right)^2}\)

\(=4\left|x\right|-\left|5x-1\right|\)

\(=4x-5x+1=1-x\)

4.

ĐKXĐ: \(x\ge0\)

\(-\sqrt{x}>-\sqrt{7}\)

\(\Leftrightarrow\sqrt{x}< \sqrt{7}\)

\(\Leftrightarrow\text{ }x< 7\)

Vậy bât phương trình có nghiệm \(0\le x< 7\)

5.

\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{2}.\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}\)

6.

\(\left|x\right|-\sqrt{1-2x+x^2}\)

\(=\left|x\right|-\sqrt{\left(1-x\right)^2}\)

\(=\left|x\right|-\left|x-1\right|\)

\(=x-x+1=1\)