\(\sqrt{x+2\sqrt{ }x-1}=2\)2 giải hộ e với ạ

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

lớp 9 thì mình dùng cách lớp 9 

\(\sqrt{x+2\sqrt{x}-1}=2\left(đk:x\ge1\right)\)

\(< =>x+2\sqrt{x}-1=4\)(bình phương 2 vế)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)(*)

\(< =>t^2+2t-5=0\)

\(\Delta=2^2-4.\left(-5\right)=4+20=24\)

\(\orbr{\begin{cases}t_1=\frac{-2+2\sqrt{6}}{2}=-1+\sqrt{6}\left(tm\right)\\t_2=\frac{-2-2\sqrt{6}}{2}=-1-\sqrt{6}\left(ktm\right)\end{cases}}\)

Khi đó thế vào * ta được :

 \(\sqrt{x}=\sqrt{6}-1< =>x=7-2\sqrt{6}\left(tmđk\right)\)

Vậy nghiệm của phương trình trên là \(7-2\sqrt{6}\)

12 tháng 8 2020

ĐK: \(x\ge1\)

\(\sqrt{x+2\sqrt{x-1}}=2\)

<=> \(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=2\)

<=> \(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

<=> \(\sqrt{x-1}+1=2\)

<=> \(\sqrt{x-1}=1\)

<=> x - 1 = 1 

<=> x = 2 thỏa mãn

17 tháng 8 2017

các biểu thức trong căn pt hết về HĐT rồi phá ra là done

NV
9 tháng 8 2020

6.

Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)

\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)

\(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)

\(\Leftrightarrow5x^2+6x+5=16x^2\)

\(\Leftrightarrow11x^2-6x-5=0\)

\(\Rightarrow x=1\)

NV
9 tháng 8 2020

4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)

5.

\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)

Đặt \(\sqrt{x^2+x+6}=t>0\)

\(t^2-\left(2x+1\right)t+6x-6=0\)

\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)

NV
6 tháng 5 2019

ĐKXĐ: \(x\ge0;x\ne1\)

\(\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)

\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{15\sqrt{x}-11+3x+7\sqrt{x}-6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3x+19\sqrt{x}-14}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+7\right)\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

3 tháng 8 2018

Câu 1 =3/10

3 tháng 8 2018

\(1,\sqrt{\left(-0,3\right)^2}=\sqrt{0,09}=0,3\)

\(2,-\frac{1}{2}\sqrt{\left(0,3\right)^2}=-\frac{1}{2}.0,3=-0,15\)

\(3,\sqrt{a^{10}}=\sqrt{\left(a^5\right)^2}=a^5\left(a\ge0\right)\)

\(4,\sqrt{\left(2-x\right)^2}=\left|2-x\right|=2-x\left(x\le2\right)\)

\(5,\sqrt{x^2+2x+1}=\sqrt{\left(x+1\right)^2}=\left|x+1\right|\)

\(6,\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)(Vì \(1< \sqrt{2}\))

\(7,\sqrt{11+6\sqrt{2}}=\sqrt{9+6\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

\(8,\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)

                                                                    \(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

                                                                    \(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)

                                                                      \(=-2\)

\(9,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}\)

                                                                    \(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

                                                                    \(=\sqrt{5}+1+\sqrt{5}-1\)

                                                                    \(=2\sqrt{5}\)

23 tháng 6 2020

nhầm rồi bạn ơi!

23 tháng 6 2020

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne\pm1\end{matrix}\right.\)

Ta có :

\(P=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)

\(=\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\left(\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(=\frac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)^2\)

Vậy..

27 tháng 9 2020

ĐK: \(x\ge0;x\ne1\)

Ta có: \(P=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\text{]}\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(=\text{[}\frac{\sqrt{x}-2}{x-1}-\frac{x+\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\text{]}\frac{\left(x-1\right)^2}{2}\)

\(=\left(\sqrt{x}-2-\frac{x+\sqrt{x}-2}{\sqrt{x}+1}\right)\frac{x-1}{2}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(x+\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2}\)

\(-2\sqrt{x}.\frac{\sqrt{x}-1}{2}\)\(=\sqrt{x}-x\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2019

Em muốn mọi người giải bài nhanh nhưng đến đề bài em cũng chưa ghi đủ?

28 tháng 10 2019

à vâng ạ

17 tháng 10 2016

Điều kiện xác định

\(\hept{\begin{cases}2-x^2+2x\ge0\\-x^2-6x-8\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-0,73\le x\le2,73\\-4\le x\le-2\end{cases}}\)

=> Tập xác định là tập rỗng

Vậy pt vô nghiệm