Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)
b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)
c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)
Phương trình trở thành:
\(a+b=\dfrac{a^2-b^2}{2}\)
\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)
\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))
\(\Leftrightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)
\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)
\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))
\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)
\(\Leftrightarrow7x^2+6x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)
\(a,\dfrac{3}{\sqrt{12x-1}}\) xác định \(\Leftrightarrow12x-1>0\Leftrightarrow12x>1\Leftrightarrow x>\dfrac{1}{12}\)
\(b,\sqrt{\left(3x+2\right)\left(x-1\right)}\) xác định \(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}3x+2\ge0\\x-1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}3x+2\le0\\x-1\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\)
\(c,\sqrt{3x-2}.\sqrt{x-1}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
\(d,\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xác định \(\Leftrightarrow-x+5>0\Leftrightarrow x< 5\)
1: ĐKXĐ: -2/2x-2>=0
=>2x-2<0
=>x<1
2: ĐKXĐ: 2/3x-1>=0
=>3x-1>0
=>x>1/3
3: ĐKXĐ: 2x-2/(-2)>=0
=>2x-2<=0
=>x<=1
4: ĐKXĐ: (3x-2)/5>=0
=>3x-2>=0
=>x>=2/3
5: ĐKXĐ: (x-2)/(x+3)>=0
=>x>=2 hoặc x<-3
a) ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
Ta có: \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(\Leftrightarrow\dfrac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\dfrac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}\)
Suy ra: \(9x^2-6x+1-9x^2-6x-1=12\)
\(\Leftrightarrow-12x=12\)
hay x=-1(thỏa ĐK)
Vậy: S={-1}
bằng phuiong pháp đặt ẩn phụ hoàn toàn nha
Đặt \(x^2+3x=t\left(t>0\right)\)
Ta có: \(\sqrt{x^2+3x+12}=x^2+3x\)
\(\Rightarrow\sqrt{t+12}=t\)
\(\Rightarrow t+12=t^2\)
\(\Rightarrow t^2-t-12=0\)
\(\Rightarrow t\left(t-4\right)+3\left(t-4\right)=0\)
\(\Rightarrow\left(t-4\right)\left(t+3\right)=0\Rightarrow\orbr{\begin{cases}t=4\left(t/m\right)\\t=-3\left(loai\right)\end{cases}}\)
Ta có: \(x^2+3x=4\)
\(\Rightarrow x^2+3x-4=0\)
\(\Rightarrow x\left(x+4\right)-\left(x+4\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
Chúc bạn học tốt.