Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) điều kiện 10 < hoặc bằng x < hoặc bằng 30
VT = căn (x-10) + căn (x-30) nhỏ hơn hoặc bằng căn (12+12 )*( x-10 +30-x) = 2 căn 10
VP = (x-20)2 + 2 căn 10
pt có nghiệm <=> x-10 = x-30 và x-20=0 <=> x = 20
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
a) ĐKXĐ : \(x\ge5\)
Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))
Khi đó phương trình thành a + b = 2
Lại có \(b^3+a^2=-2\)
=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)
a = 5 => x = 30 (tm)
Vậy x = 30 là nghiệm phương trình
d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)
<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)
<=> |5x - 2| + |5x - 4| = 2
Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)
Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)
Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình
\(\sqrt{72a^8\left(x^2-4x+4\right)}=\sqrt{72a^8\left(x-2\right)^2}=\sqrt{72}a^4|\left(x-2\right)|=\sqrt{72}a^4\left(2-x\right)\)
\(\sqrt{40x^6\left(a^2+6a+9\right)}=\sqrt{40x^6\left(x+3\right)^2}=\sqrt{40}|x^3\left(x+3\right)|=\sqrt{40}.\left(-x^3\right)\left(3-x\right)\)
\(=-\sqrt{40}x^3\left(3-x\right)\)
\(a\text{) }\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)
\(b\text{) }\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\\ =\sqrt{18+3+2\sqrt{54}}-\sqrt{18+3-2\sqrt{54}}\\ =\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}\\ =\sqrt{18}+\sqrt{3}-\sqrt{18}+\sqrt{3}\\ =2\sqrt{3}\)
\(d\text{) }\sqrt{x+1+2\sqrt{x}}\left(x\ge0\right)\\ =\sqrt{\left(\sqrt{x}+1\right)^2}=\sqrt{x}+1\)
\(e\text{) }\sqrt{2x+3+2\sqrt{x^2+3x+2}}\left(x\le-2;x\ge-1\right)\\ =\sqrt{\left(x+2\right)+\left(x+1\right)+2\sqrt{\left(x+1\right)\left(x+2\right)}}=\sqrt{\left(\sqrt{x+1}+\sqrt{x+2}\right)^2}=\sqrt{x+1}+\sqrt{x+2}\)
Xem lại đề câu c nha.
a)\(\sqrt{10+\sqrt{9}}=\sqrt{10+3}=\sqrt{13}\)
b)\(\sqrt{21+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
=\(\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\left(3\sqrt{2}\right)^2-2.3.\sqrt{2}.\sqrt{3}+\sqrt{3^2}}\)
=\(\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
=\(3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}\)
=\(2\sqrt{3}\)
c)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
ÁP dụng HĐT \(\sqrt{a+b}\pm\sqrt{a-b}=\sqrt{2\left(a.\sqrt{a^2\pm b}\right)}\)ta có:
=\(\sqrt{2\left(4+\sqrt{4^2-10-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{16-10-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{6-2\sqrt{5}}\right)}\)
=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.1+1^2}\right)}\)
=\(\sqrt{2\left(4+\sqrt{\left(\sqrt{5}-1\right)^2}\right)}\)
=\(\sqrt{2\left(4+\sqrt{5}-1\right)}\)
=\(\sqrt{2\left(3+\sqrt{5}\right)}\)
=\(\sqrt{6+\sqrt{5}}=\sqrt{5}+1\)
d)\(\sqrt{x+1+2\sqrt{x}}=\sqrt{\left(\sqrt{x}\right)^2+2\sqrt{x}.1+1^2}=\sqrt{x}+1\)
1/Em không chắc nha, nhất là câu c ý, nó sai sai hay là em làm sai nhỉ?
a) ĐK \(x\ge0\). Bình phương hai vế:
\(x+5=x+2\sqrt{x}+1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (TMĐK)
b)ĐK \(0\le x\le1\) . Bình phương hai vế:
\(2\sqrt{x\left(1-x\right)}=0\Leftrightarrow x\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\left(TMĐK\right)\)
c) ĐK: \(\left\{{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\Leftrightarrow5\le x\le3\) (vô lí))
Vậy không tồn tại x thỏa mãn đề bài.
\(x+2\sqrt{3}=4\Leftrightarrow x=4-2\sqrt{3}\)
Thay x vào biểu thức B:\(=\left(4-2\sqrt{3}\right)^6-7\left(4-2\sqrt{3}\right)^5-3\left(4-2\sqrt{3}\right)^4-4\left(4-2\sqrt{3}\right)^3+9\left(4-2\sqrt{3}\right)^2-40\left(4-2\sqrt{3}\right)+2035\)
\(=2015\)
TXĐ: D=R
\(\Leftrightarrow\sqrt{x^2-40x+4000}=\sqrt{x^2+3600}+10\)
\(\Leftrightarrow x^2-40x+4000=x^2+3600+20\sqrt{x^2+3600}+100\)
\(\Leftrightarrow15-2x=\sqrt{x^2+3600}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{15}{2}\\\left(15-2x\right)^2=x^2+3600\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{15}{2}\\3x^2-60x-3375=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-25\\x=45\left(loại\right)\end{matrix}\right.\)