Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
Lời giải:
a)
PT \(\Leftrightarrow \sqrt{(3x-1)^2}=\sqrt{(x+4)^2}\)
\(\Leftrightarrow |3x-1|=|x+4|\)
\(\Rightarrow \left[\begin{matrix} 3x-1=x+4\\ 3x-1=-(x+4)\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2.5\\ x=-0.75\end{matrix}\right.\)
Vậy........
b) ĐK: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=5\)
\(\Leftrightarrow |\sqrt{x-1}+2|+|\sqrt{x-1}-3|=5\)
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(|\sqrt{x-1}+2|+|\sqrt{x-1}-3|=|\sqrt{x-1}+2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}+2+3-\sqrt{x-1}|=5\)
Dấu "=" xảy ra khi \((\sqrt{x-1}+2)(3-\sqrt{x-1})\geq 0\)
\(\Leftrightarrow -2\leq \sqrt{x-1}\leq 3\)
\(\Leftrightarrow 1\leq x\leq 10\)
Vậy.........
1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)
\(t^2-2+\left(3-t\right)x-1-2t=0\)
\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)
Vậy nghiệm pt là \(x=\pm\sqrt{7}\)
2/
\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)
Đặt \(\sqrt{x^2+3}-3x=t\)
\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)
TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)
TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)
3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)
\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)
\(\Rightarrow VT\le2\)
\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)
\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
4/
ĐKXĐ: \(x\ge\dfrac{-5}{4}\)
\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
a) \(\sqrt{4+2x-x^2}=x-2\)
\(\Leftrightarrow\left(\sqrt{4+2x-x^2}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow4+2x-x^2=x^2-4x+4\)
\(\Leftrightarrow-x^2+6x=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\6-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
hình như bài này sai đó! em mới học lớp 8 thôi !
lê thị thu huyền:
sai rồi đó em, nhưng mà nhờ em chị mới biết chị sai chỗ nào. Không hiểu đầu óc kiểu gì mà lại thấy 2x+4x=8x mới chết chứ !!!
đặt \(\sqrt[3]{14+2\sqrt{47}}=a\) , \(\sqrt[3]{14-2\sqrt{47}}=b\) rồi làm bt
\(\sqrt{x+1}+\sqrt{6x-14}=x^2-5\)
\(\sqrt{7x-13}=x^2-5\)
\(2\sqrt{3-13}=x^2-5\)
\(2\sqrt{10}=x^2-5\)
Đến đây bạn tự làm tiếp đi nhé
\(\sqrt{x+1}+\sqrt{6x-14}=x^2-5\)
\(\Leftrightarrow\left(x^2-9\right)+\left(2-\sqrt{x+1}\right)+\left(2-\sqrt{6x-14}\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-\frac{1}{2+\sqrt{x+1}}-\frac{6}{2+\sqrt{6x-14}}\right)=0\)
\(\Leftrightarrow x=3\)