Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(ĐKXĐ:\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)
b) Ta có:
\(P=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{2}\sqrt{y-2}}{\sqrt{2}y}+\frac{\sqrt{3}\sqrt{z-3}}{\sqrt{3}z}\)
Áp dụng bbđt AM - GM ta có :
\(\frac{\sqrt{x-1}}{x}\le\frac{\frac{x-1+1}{2}}{x}=\frac{x}{2x}=\frac{1}{2}\)
\(\frac{\sqrt{2}\sqrt{y-2}}{\sqrt{2}y}\le\frac{\frac{2+y-2}{2}}{\sqrt{2}y}=\frac{y}{2\sqrt{2}y}=\frac{1}{2\sqrt{2}}\)
\(\frac{\sqrt{3}\sqrt{z-3}}{\sqrt{3}z}\le\frac{\frac{3+z-3}{2}}{\sqrt{3}z}=\frac{z}{2\sqrt{3}z}=\frac{1}{2\sqrt{3}}\)
\(\Rightarrow P\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}}\)
dk , x lơn hơn hoặc = 0 , x khác 4
\(\frac{\sqrt{x}}{\sqrt{x-2}}\times\frac{x-4}{2\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+2}}\times\frac{x-4}{2\sqrt{x}}.\)
có \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)\)
\(\frac{\sqrt{x}}{\sqrt{x}-2}\times\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)
rút gọn
\(\frac{\left(\sqrt{x}+2\right)}{2}+\frac{\left(\sqrt{x}-2\right)}{2}\)
\(\frac{2\sqrt{x}}{2}\)
`sqrt{4x+20}-3sqrt{5+x}+4/3sqrt{9x+15}=6(x>=-5)`
`<=>sqrt{4(x+5)}-3sqrt{x+5}+4/3sqrt{9(x+5)}=6`
`<=>2sqrt{x+5}-3sqrt{x+5}+4sqrt{x+5}=6`
`<=>3sqrt{x+5}=6`
`<=>sqrt{x+5}=2`
`<=>x+5=4`
`<=>x=-1(tm)`
Vậy `x=-1`
a: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1
b: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\le0\end{matrix}\right.\Leftrightarrow2\le x\le4\)
c: ĐKXĐ:\(\left\{{}\begin{matrix}x^2-4\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow x\ge2\)
d: ĐKXĐ: \(\left\{{}\begin{matrix}x+3\ge0\\x^2-9\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in[-3;+\infty)\\x\in(-\infty;-3]\cup[3;+\infty)\end{matrix}\right.\Leftrightarrow x=-3\)
\(đkxđ\Leftrightarrow x\ge\sqrt{x^2-4x+4}\)\(\Rightarrow x\ge|x-2|\Rightarrow x\ge0\)
\(A=\sqrt{x-\sqrt{x^2-4x+4}}.\)
\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)
\(=\sqrt{x-|x-2|}=0\)
Nếu \(x\ge2\Rightarrow A=\sqrt{x-\left(x-2\right)}=\sqrt{x-x+2}=\sqrt{2}\)
Nếu \(0\le x< 2\Rightarrow A=\sqrt{x-\left(2-x\right)}=\sqrt{2x-2}\)
Bài 1:
ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$
Bài 2:
a. ĐKXĐ: $x\geq \frac{1}{3}$
PT $\Leftrightarrow 3x-1=2^2=4$
$\Leftrightarrow x=\frac{5}{3}$ (tm)
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{x-2}+2\sqrt{x-2}=6$
$\Leftrightarrow 3\sqrt{x-2}=6$
$\Leftrightarrow \sqrt{x-2}=2$
$\Leftrightarrow x-2=4$
$\Leftrightarrow x=6$ (tm)
ĐKXĐ: x>=4,