Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{6}{2-\sqrt{10}}-\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\sqrt{49+4\sqrt{10}}\)
\(=\dfrac{6\left(2+\sqrt{10}\right)}{4-10}-\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}+\sqrt{49+2\cdot2\sqrt{10}}\)
\(=\dfrac{6\left(2+\sqrt{10}\right)}{-6}-\sqrt{10}+\sqrt{49+2\cdot\sqrt{40}}\)
\(=-2-\sqrt{10}-\sqrt{10}+\sqrt{49+4\sqrt{10}}\)
\(=-2-2\sqrt{10}+\sqrt{49+4\sqrt{10}}\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)
\(\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{x}{\sqrt{x}+1}\)
\(=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{x}{\sqrt{x}+1}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\cdot\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\cdot\left(\sqrt{x}+1\right)}\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)
\(\left(\dfrac{3}{\sqrt{x}+2}+\dfrac{9\sqrt{x}-10}{4-x}-\dfrac{\sqrt{x}}{2-\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(=\left(\dfrac{3}{\sqrt{x}+2}-\dfrac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(=\dfrac{3\left(\sqrt{x}-2\right)-9\sqrt{x}+10+\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
\(=\dfrac{3\sqrt{x}-6-9\sqrt{x}+10+x+2\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)+2\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{x\sqrt{x}+2x+2x-50+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{x\sqrt{x}-5\sqrt{x}+4x}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}\left(x+4\sqrt{x}-5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-1}{2}\)
\(\dfrac{x+2\sqrt{x}}{2\sqrt{x}+10}+\dfrac{\sqrt{x}-5}{\sqrt{x}}+\dfrac{50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\left(đk:x>0\right)\)
\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)+2\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\)
\(=\dfrac{x\sqrt{x}+2x+2x-50+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{x\sqrt{x}+4x-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-1}{2}\)
a: ĐKXĐ: x>0
\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b: ĐKXĐ: x>=0; x<>16
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{x+16}\)
\(=\dfrac{x+16}{x+16}\cdot\dfrac{\sqrt{x}+2}{x-16}=\dfrac{\sqrt{x}+2}{x-16}\)
c: ĐKXĐ: x>=0; x<>25
\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
d: \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\) (ĐK: x ≥ 0, x ≠ 4)
\(=\left[\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right]\)
\(=\left(\dfrac{-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\dfrac{6}{\sqrt{x}+2}\)
\(=\dfrac{\left(-6\right)\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)
Vậy...
\(A=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{5x\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\left(x>0;x\ne4\right)\\ A=\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{5x\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\\ A=\dfrac{10x\left(\sqrt{x}-2\right)}{\left(2\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}\)
\(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}-4}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\left(ĐKXĐ:x\ge0\right)\)
\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)}+\dfrac{10-x}{\sqrt{x}+2}\)
\(=\dfrac{x-4+10-x}{\sqrt{x}+2}\)
\(=\dfrac{6}{\sqrt{x}+2}\)
\(=\dfrac{6\left(\sqrt{x}-2\right)}{x-4}\)